Acta Laser Biology Sinica, Volume. 33, Issue 6, 496(2024)

The Composition and Research Methods of Rumen Microbiota in Ruminants

HE Guangzu1, YANG Hua2, YE Huihui1, LI Ye2, LI Fengzhen1, ZOU Zhenxing1, WANG Bin2, and HU Zhan2、*
Author Affiliations
  • 1Hunan Polytechnic of Environment and Biology, Hengyang 421005, China
  • 2Hunan Institute of Microbiology, Changsha 410009, China
  • show less
    References(53)

    [1] [1] CASTILLO-GONZALEZ A R, BURROLA-BARRAZA M E, DOMINGUEZ-VIVEROS J, et al. Rumen microorganisms and fermentation[J]. Archivos De Medicina Veterinaria, 2014, 46: 349-361.

    [2] [2] STEELE M A, PENNER G B, CHAUCHEYRAS-DURAND F, et al. Development and physiology of the rumen and the lower gut: targets for improving gut health[J]. Journal of Dairy Science, 2016, 99(6): 4955-4966.

    [3] [3] MORGAVI D P, KELLY W J, JANSSEN P H, et al. Rumen microbial (meta) genomics and its application to ruminant production[J]. Animal, 2013, 7(s1): 184-201.

    [4] [4] NEWBOLD C J, RAMOS-MORALES E. Review: ruminal microbiome and microbial metabolome: effects of diet and ruminant host[J]. Animal, 2020, 14(s1): s78-s86.

    [5] [5] HOOMAN D, TUN H M, CARDOSO F C, et al. Linking peripartal dynamics of ruminal microbiota to dietary changes and production parameters[J]. Frontiers in Microbiology, 2017, 7: 21-43.

    [6] [6] LI F Y, HITCH T C, CHEN Y H, et al. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle[J]. Microbiome, 2019, 7: 6.

    [7] [7] MAO S, ZHANG M, LIU J, et al. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function[J]. Scientific Reports, 2015, 5: 16116.

    [8] [8] LEY R E, LOZUPONE C A, HAMADY M, et al. Worlds within worlds: evolution of the vertebrate gut microbiota[J]. Nature Reviews Microbiology, 2008, 6(10): 776-788.

    [9] [9] MCSWEENEY C S. Methods in gut microbial ecology for ruminants[M]. Springer Netherlands, 2005.

    [10] [10] SANJORJO R A, TSETEN T, KANG M K, et al. In pursuit of understanding the rumen microbiome[J]. Fermentation, 2023, 9: 114.

    [11] [11] MATTHEWS C, CRISPIE F, LEWIS E, et al. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency[J]. Gut Microbes, 2019, 10(2): 115-132.

    [12] [12] SESHADRI R, LEAHY S C, ATTWOOD G T, et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 collection[J]. Nature Biotechnology, 2018, 36(4): 359-367.

    [13] [13] NEWBOLD C J, DE-LA-FUENTE G, BELANCHE A, et al. The role of ciliate protozoa in the rumen[J]. Frontiers in Microbiology, 2015, 6: 1313.

    [14] [14] FOUTS D E, SZPAKOWSKI S, PURUSHE J, et al. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen[J]. PLoS One, 2012, 7(11): e48289.

    [15] [15] WILLIAMS C L, THOMAS B J, MCEWAN N R, et al. Rumen protozoa play a significant role in fungal predation and plant carbohydrate breakdown[J]. Frontiers in Microbiology, 2020, 11: 720.

    [16] [16] PATRA A, PARK T, KIM M, et al. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances[J]. Journal of Animal Science and Biotechnology, 2017, 8: 13.

    [17] [17] KRAUSE D O, NAGARAJA T G, WRIGHT A D, et al. Board-invited review: rumen microbiology: leading the way in microbial ecology[J]. Journal of Animal Science, 2013, 91: 331-341.

    [18] [18] GILBERT R A, TOWNSEND E M, CREW K S, et al. Rumen virus populations: technological advances enhancing current understanding[J]. Frontiers in Microbiology, 2020, 11: 450.

    [19] [19] HENDERSON G, COX F, GANESH S, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[J]. Scientific Reports, 2016, 5: 14567.

    [20] [20] JAMI E, ISRAEL A, KOTSER A, et al. Exploring the bovine rumen bacterial community from birth to adulthood[J]. The ISME Journal, 2013, 7(6): 1069-1079.

    [21] [21] FOCARDI S, PEPI M. Development and maturation of microbiota in cow rumen, plant-fibers degradation and influences on the immune system and cow health[J]. Corpus Journal of Dairy and Veterinary Science, 2022, 3(4): 1047.

    [23] [23] CHENG J B, ZHANG X X, XU D, et, al. Relationship between rumen microbial differences and traits among Hu sheep, Tan sheep, and Dorper sheep[J]. Journal of Animal Science, 2022, 100(9): 1-10.

    [24] [24] JAMI E, MIZRAHI I. Similarity of the ruminal bacteria across individual lactating cows[J]. Anaerobe, 2012, 18(3): 338-343.

    [28] [28] MUNOZ-VARGAS L, OPIYO S O, DIGIANANTONIO R, et al. Fecal microbiome of periparturient dairy cattle and associations with the onset of Salmonella shedding[J]. PLoS One, 2018, 13(5): e0196171.

    [29] [29] SUN H Z, XUE M Y, GUAN L L, et al. A collection of rumen bacteriome data from 334 mid-lactation dairy cows[J]. Scientific Data, 2019, 6: 180301.

    [30] [30] ANDERSON C L, SCHNEIDER C J, ERICKSON G E, et al. Rumen bacterial communities can be acclimated faster to high concentrate diets than currently implemented feedlot programs[J]. Journal of Applied Microbiology, 2016, 120(3): 588-599.

    [31] [31] CREMONESI P, CONTE G, SEVERGNINI M, et al. Evaluation of the effects of different diets on microbiome diversity and fatty acid composition of rumen liquor in dairy goat[J]. Animal, 2018, 12(9): 1856-1866.

    [32] [32] BERGMANN G T. Microbial community composition along the digestive tract in forage- and grain-fed bison[J]. BMC Veterinary Research, 2017, 13(1): 253.

    [33] [33] FERNANDO S C, PURVIS H T, NAJAR F Z, et al. Rumen microbial population dynamics during adaptation to a highgrain diet[J]. Applied and Environmental Microbiology, 2010, 76(22): 7482-7490.

    [34] [34] LI W, HAN Y S, XUE Y, et al. Metagenomic analysis reveals the influences of milk containing antibiotics on the rumen microbes of calves[J]. Archives of Microbiology, 2017, 199: 433-443.

    [35] [35] SHEN J S, LIU Z, YU Z T, et al. Monensin and nisin affect rumen fermentation and microbiota differently in vitro[J]. Frontiers in Microbiology, 2017, 8: 10-21.

    [36] [36] FOMENKY B E, DO D N, TALBOT G, et al. Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre-and post-weaned calves[J]. Scientific Reports, 2018, 8(1): 14147.

    [37] [37] XIAO J X, M. ALUGONGO G, JI S K, et al. Effects of saccharomyces cerevisiae fermentation products on the microbial community throughout the gastrointestinal tract of calves[J]. Animals, 2019, 9(4): ani9010004.

    [39] [39] PITTA D W, PARMAR N, PATEL A K, et al. Bacterial diversity dynamics associated with different diets and different primer pairs in the rumen of kankrej cattle[J]. PLoS One, 2014, 9(11): e111710.

    [41] [41] PANG K Y, DAI D W, YANG Y K, et al. Effects of high concentrate rations on ruminal fermentation and microbiota of yaks[J]. Frontiers in Microbiology, 2022, 13: 957152.

    [42] [42] PITTA D W, PINCHAK W E, DOWD S E, et al. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets[J]. Microbial ecology, 2010, 59(3): 511-522.

    [43] [43] CAPORASO J G, LAUBER C L, WALTERS W A, et al. Ultra-high-throughput microbial community analysis on the illumina hiseq and miseq platforms[J]. ISME Journal, 2012, 6(8): 1621-1624.

    [44] [44] DE-MUINCK E J, TROSVIK P, GILFILLAN G D, et al. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the illumina hiseq platform[J]. Microbiome, 2017, 5(1): 68.

    [46] [46] JOSE V L, APPOOTHY T, MORE R P, et al. Metagenomic insights into the rumen microbial fibrolytic enzymes in indian crossbred cattle fed finger millet straw[J]. AMB Express, 2017, 7(1): 13.

    [47] [47] WU X, HUANG S, HUANG J, et al. Identification of the potential role of the rumen microbiome in milk protein and fat synthesis in dairy cows using metagenomic sequencing[J]. Animals (Basel), 2021, 11(5): 1247.

    [48] [48] SHINKAI T, MITSUMORI M, SOFYAN A, et al. Comprehensive detection of bacterial carbohydrate-active enzyme coding genes expressed in cow rumen[J]. Animal Science Journal, 2016, 87(11): 1363-1370.

    [50] [50] ZHAO S, ZHAO J, BU D, et al. Metabolomics analysis reveals large effect of roughage types on rumen microbial metabolic profile in dairy cows[J]. Letters in Applied Microbiology, 2014, 59(1): 79-85.

    [51] [51] AMIN A B, ZHANG L, ZHANG J Y, et al. Metagenomic and metabolomic insights into the mechanism underlying the disparity in milk yield of holstein cows[J]. Frontiers in Microbiology, 2022, 13: 844968.

    [52] [52] WANG Y, NAN X, ZHAO Y, et al. Ruminal degradation of rumen-protected glucose influences the ruminal microbiota and metabolites in early-lactation dairy cows[J]. Applied Environmental Microbiology, 2021, 87(2): e01908-20

    [53] [53] COLLADO M C, SANZ Y. Quantification of mucosa-adhered microbiota of lambs and calves by the use of culture methods and fluorescent in situ hybridization coupled with flow cytometry techniques[J]. Veterinary Microbiology, 2007, 121(3/4): 299-306.

    [54] [54] KONG Y H, HE M L, MC-ALISTER T, et al. Quantitative fluorescence in situ hybridization of microbial communities in the rumens of cattle fed different diets[J]. Applied and Environmental Microbiology, 2010, 76(20): 6933-6938.

    [55] [55] LI S, WANG Q, LIN X, et al. The use of “Omics” in lactation research in dairy cows[J]. International Journal of Molecular Sciences, 2017, 18(5): 983.

    [56] [56] DIXIT S, KUMAR S, SHARMA R, et al. Rumen multi-omics addressing diet-host-microbiome interplay in farm animals: a review[J]. Animal Biotechnology, 2023, 34(7): 3187-3205.

    [57] [57] WANG D D, CHEN L Y, TANG G F, et al. Multi-omics revealed the long-term effect of ruminal keystone bacteria and the microbial metabolome on lactation performance in adult dairy goats[J]. Microbiome, 2023, 11: 215.

    [58] [58] MALMUTHUGE N, LIANG G, GUAN L L. Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes[J]. Genome Biology, 2019, 20(1): 172.

    [59] [59] XUE M, SUN H, WU X, et al. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance[J]. Microbiome, 2020, 8(1): 64.

    [60] [60] SUN H Z, ZHOU M, WANG O, et al. Multi-omics reveals functional genomic and metabolic mechanisms of milk production and quality in dairy cows[J]. Bioinformatics, 2020, 36(8): 2530-2537.

    [61] [61] GRUNINGER R J, RIBEIRO G O, CAMERON A, et al. Invited review: application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants[J]. Animal, 2019, 13(9): 1843-1854.

    Tools

    Get Citation

    Copy Citation Text

    HE Guangzu, YANG Hua, YE Huihui, LI Ye, LI Fengzhen, ZOU Zhenxing, WANG Bin, HU Zhan. The Composition and Research Methods of Rumen Microbiota in Ruminants[J]. Acta Laser Biology Sinica, 2024, 33(6): 496

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 19, 2024

    Accepted: Feb. 27, 2025

    Published Online: Feb. 27, 2025

    The Author Email: Zhan HU (309594397@qq.com)

    DOI:10.3969/j.issn.1007-7146.2024.06.003

    Topics