Journal of Synthetic Crystals, Volume. 53, Issue 4, 572(2024)

Research Progress on Preparation of Organic-Inorganic Hybrid Lead Halide Perovskite Single-Crystalline Thin-Films by Solution-Processed Space-Confined Method and Their Device Applications

ZHANG Qingwen, SHAN Dongming, ZHANG Hu, and DING Ran*
Author Affiliations
  • [in Chinese]
  • show less
    References(88)

    [1] [1] CHEN Z L, DONG Q F, LIU Y, et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption[J]. Nature Communications, 2017, 8: 1890.

    [2] [2] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26(10): 1584-1589.

    [3] [3] ADINOLFI V, PENG W, WALTERS G, et al. The electrical and optical properties of organometal halide perovskites relevant to optoelectronic performance[J]. Advanced Materials, 2018, 30(1): 1700764.

    [4] [4] DONG Q F, FANG Y J, SHAO Y C, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970.

    [5] [5] FANG Y J, DONG Q F, SHAO Y C, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 2015, 9: 679-686.

    [6] [6] SAIDAMINOV M I, HAQUE M A, SAVOIE M, et al. Perovskite photodetectors operating in both narrowband and broadband regimes[J]. Advanced Materials, 2016, 28(37): 8144-8149.

    [7] [7] ZHANG Y X, LIU Y C, LI Y J, et al. Perovskite CH3NH3Pb(BrxI1-x)3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications[J]. Journal of Materials Chemistry C, 2016, 4(39): 9172-9178.

    [8] [8] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.

    [9] [9] LIANG Z, ZHANG Y, XU H F, et al. Out-of-plane cations homogenise perovskite composition for solar cells[J]. Nature, 2023, 624: 557-563.

    [10] [10] AHMADI M, WU T, HU B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics[J]. Advanced Materials, 2017, 29(41): 1605242.

    [11] [11] DOU L T, YANG Y, YOU J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 2014, 5: 5404.

    [12] [12] SAIDAMINOV M I, HAQUE M A, ALMUTLAQ J, et al. Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection[J]. Advanced Optical Materials, 2017, 5(2): 1600704.

    [13] [13] SHAIKH P A, SHI D, RETAMAL J R D, et al. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection[J]. Journal of Materials Chemistry C, 2016, 4(35): 8304-8312.

    [14] [14] YANG Z Q, DENG Y H, ZHANG X W, et al. High-performance single-crystalline perovskite thin-film photodetector[J]. Advanced Materials, 2018, 30(8): 1704333.

    [15] [15] WANG H, KIM D H. Perovskite-based photodetectors: materials and devices[J]. Chemical Society Reviews, 2017, 46(17): 5204-5236.

    [16] [16] HASSAN Y, ASHTON O J, PARK J H, et al. Facile synthesis of stable and highly luminescent methylammonium lead halide nanocrystals for efficient light emitting devices[J]. Journal of the American Chemical Society, 2019, 141(3): 1269-1279.

    [17] [17] LANZETTA L, MARIN-BELOQUI J M, SANCHEZ-MOLINA I, et al. Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices[J]. ACS Energy Letters, 2017, 2(7): 1662-1668.

    [18] [18] LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent[J]. Nature, 2018, 562: 245-248.

    [19] [19] YUAN Z, ZHOU C K, TIAN Y, et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission[J]. Nature Communications, 2017, 8: 14051.

    [20] [20] WANG K Y, SUN W Z, LI J K, et al. Unidirectional lasing emissions from CH3NH3PbBr3 perovskite microdisks[J]. ACS Photonics, 2016, 3(6): 1125-1130.

    [21] [21] WANG K Y, WANG S, XIAO S M, et al. Recent advances in perovskite micro- and nanolasers[J]. Advanced Optical Materials, 2018, 6(18): 1800278.

    [22] [22] YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 8056.

    [23] [23] ZHU H M, FU Y P, MENG F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14: 636-642.

    [24] [24] SHRESTHA S, FISCHER R, MATT G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers[J]. Nature Photonics, 2017, 11: 436-440.

    [25] [25] WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10: 333-339.

    [26] [26] WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics, 2017, 11: 315-321.

    [27] [27] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7(3): 982-988.

    [28] [28] BAIKIE T, FANG Y N, KADRO J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J]. Journal of Materials Chemistry A, 2013, 1(18): 5628-5641.

    [29] [29] LI N X, LUO Y Q, CHEN Z H, et al. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors[J]. Joule, 2020, 4(8): 1743-1758.

    [30] [30] WANG R, MUJAHID M, DUAN Y, et al. A review of perovskites solar cell stability[J]. Advanced Functional Materials, 2019, 29(47): 1808843.

    [31] [31] ZHENG X P, HOU Y, BAO C X, et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells[J]. Nature Energy, 2020, 5: 131-140.

    [32] [32] GUAN Y J, XU M, ZHANG W H, et al. In situ transfer of CH3NH3PbI3 single crystals in mesoporous scaffolds for efficient perovskite solar cells[J]. Chemical Science, 2020, 11(2): 474-481.

    [33] [33] SONG Y L, BI W H, WANG A R, et al. Efficient lateral-structure perovskite single crystal solar cells with high operational stability[J]. Nature Communications, 2020, 11: 274.

    [34] [34] XU Q, DATTA A, BECLA K, et al. Development of continuous solution growth method for growth of large and high-quality perovskite single crystals[J]. Chemical Engineering Journal, 2023, 475: 146155.

    [35] [35] FENG A B, XIE S D, FU X W, et al. Inch-sized thin metal halide perovskite single-crystal wafers for sensitive X-ray detection[J]. Frontiers in Chemistry, 2022, 9: 823868.

    [36] [36] CHEN Y X, GE Q Q, SHI Y, et al. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films[J]. Journal of the American Chemical Society, 2016, 138(50): 16196-16199.

    [37] [37] LIU Y C, ZHANG Y X, YANG Z, et al. Thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices[J]. Advanced Materials, 2016, 28(41): 9204-9209.

    [38] [38] PENG W, WANG L F, MURALI B, et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells[J]. Advanced Materials, 2016, 28(17): 3383-3390.

    [39] [39] JING H, PENG R W, MA R M, et al. Flexible ultrathin single-crystalline perovskite photodetector[J]. Nano Letters, 2020, 20(10): 7144-7151.

    [40] [40] LI C Q, CHEN F T, WANG K Y, et al. Altering heating area assisted space confined method for growth of large scale and high quality MAPbBr3 single crystal thin films[J]. Journal of Materials Chemistry C, 2022, 10(39): 14580-14589.

    [41] [41] CHEN J, FU Y P, SAMAD L, et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I)[J]. Nano Letters, 2017, 17(1): 460-466.

    [42] [42] CHEN J, LUO Z Y, FU Y P, et al. Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X=Br, I) nanowires[J]. ACS Energy Letters, 2019, 4(5): 1045-1052.

    [43] [43] CHEN J, MORROW D J, FU Y P, et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3)[J]. Journal of the American Chemical Society, 2017, 139(38): 13525-13532.

    [44] [44] HA S T, LIU X F, ZHANG Q, et al. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices[J]. Advanced Optical Materials, 2014, 2(9): 838-844.

    [45] [45] FANG H J, LI Q, DING J, et al. A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator[J]. Journal of Materials Chemistry C, 2016, 4(3): 630-636.

    [46] [46] LIU Y C, SUN J K, YANG Z, et al. 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors[J]. Advanced Optical Materials, 2016, 4(11): 1829-1837.

    [47] [47] LV Q R, LIAN Z P, HE W H, et al. A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films[J]. Journal of Materials Chemistry C, 2018, 6(16): 4464-4470.

    [48] [48] SCHLIPF J, ASKAR A M, PANTLE F, et al. Top-down approaches towards single crystal perovskite solar cells[J]. Scientific Reports, 2018, 8: 4906.

    [49] [49] DANG Y Y, LIU Y, SUN Y X, et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3[J]. CrystEngComm, 2015, 17(3): 665-670.

    [50] [50] DANG Y Y, ZHONG C, ZHANG G D, et al. Crystallographic investigations into properties of acentric hybrid perovskite single crystals NH(CH3)3SnX3 (X=Cl, Br)[J]. Chemistry of Materials, 2016, 28: 6968-6974.

    [51] [51] LV Q R, LIAN Z P, LI Q, et al. Formic acid: an accelerator and quality promoter for nonseeded growth of CH3NH3PbI3 single crystals[J]. Chemical Communications, 2018, 54(9): 1049-1052.

    [52] [52] SU J, CHEN D P, LIN C T. Growth of large CH3NH3PbX3 (X=I, Br) single crystals in solution[J]. Journal of Crystal Growth, 2015, 422: 75-79.

    [53] [53] DING J X, ZHAO Y, DU S J, et al. Controlled growth of MAPbBr3 single crystal: understanding the growth morphologies of vicinal hillocks on (100) facet to form perfect cubes[J]. Journal of Materials Science, 2017, 52(13): 7907-7916.

    [54] [54] MACULAN G, SHEIKH A D, ABDELHADY A L, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector[J]. The Journal of Physical Chemistry Letters, 2015, 6(19): 3781-3786.

    [55] [55] SAIDAMINOV M I, ABDELHADY A L, MACULAN G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth[J]. Chemical Communications, 2015, 51(100): 17658-17661.

    [56] [56] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6: 7586.

    [57] [57] YE T, WANG X Z, LI X Q, et al. Ultra-high Seebeck coefficient and low thermal conductivity of a centimeter-sized perovskite single crystal acquired by a modified fast growth method[J]. Journal of Materials Chemistry C, 2017, 5(5): 1255-1260.

    [58] [58] SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522.

    [59] [59] PARK J S, CHOI S, YAN Y, et al. Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal[J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4304-4308.

    [60] [60] YANG Y, YAN Y, YANG M J, et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal[J]. Nature Communications, 2015, 6: 7961.

    [61] [61] ZHOU H W, NIE Z H, YIN J, et al. Antisolvent diffusion-induced growth, equilibrium behaviours in aqueous solution and optical properties of CH3NH3PbI3 single crystals for photovoltaic applications[J]. RSC Advances, 2015, 5(104): 85344-85349.

    [62] [62] ZUO C T, DING L M. Lead-free perovskite materials (NH4)3Sb2IxBr9-x[J]. Angewandte Chemie International Edition, 2017, 56(23): 6528-6532.

    [63] [63] DENG Y H, YANG Z Q, MA R M. Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering[J]. Nano Convergence, 2020, 7(1): 25.

    [64] [64] BAI Y, ZHANG H X, ZHANG M J, et al. Liquid-phase growth and optoelectronic properties of two-dimensional hybrid perovskites CH3NH3PbX3 (X=Cl, Br, I)[J]. Nanoscale, 2020, 12(2): 1100-1108.

    [65] [65] LIU X, ZHANG Q C, ZHAO D, et al. Improved crystallization quality of FAPbBr3 single crystals by a seeded solution method[J]. ACS Applied Materials & Interfaces, 2022, 14(45): 51130-51136.

    [66] [66] GU Z K, HUANG Z D, LI C, et al. A general printing approach for scalable growth of perovskite single-crystal films[J]. Science Advances, 2018, 4(6): eaat2390.

    [67] [67] KIM T, CHU Y H, LEE J, et al. Confined growth of high-quality single-crystal MAPbBr3 by inverse temperature crystallization for photovoltaic applications[J]. Electronic Materials Letters, 2021, 17(4): 347-354.

    [68] [68] VIOLA I, MATTEOCCI F, DE MARCO L, et al. Microfluidic-assisted growth of perovskite single crystals for photodetectors[J]. Advanced Materials Technologies, 2023, 8(14): 2300023.

    [69] [69] ZHANG J S, ZHAO J J, ZHOU Y F, et al. Polarization-sensitive photodetector using patterned perovskite single-crystalline thin films[J]. Advanced Optical Materials, 2021, 9(17): 2100524.

    [70] [70] ZHANG J S, SONG J P, ZHANG Q. Large-scale perovskite single crystal growth and surface patterning technologies[J]. Small Science, 2023, 3(11): 230085.

    [71] [71] HUANG R, LIN D H, LIU J Y, et al. Nanochannel-confined growth of crystallographically orientated perovskite nanowire arrays for polarization-sensitive photodetector application[J]. Science China Materials, 2021, 64(10): 2497-2506.

    [72] [72] SUN Y Y, LIU X Y, DENG W, et al. A three-dimensional confined crystallization strategy toward controllable growth of high-quality and large-area perovskite single crystals[J]. Advanced Functional Materials, 2022, 32(26): 2112758.

    [73] [73] LEE L, BAEK J, PARK K S, et al. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth[J]. Nature Communications, 2017, 8: 15882.

    [74] [74] DI H P, JIANG W, SUN H, et al. Improving the crystallinity of CH3NH4PbBr3 single crystal thin films via controlling the evaporation of methylamine[J]. Thin Solid Films, 2021, 720: 138519.

    [75] [75] ZHANG X Y, ZHAO D, HUO Z Y, et al. Perovskite (PEA)2Pb(I1-xBrx)4 single crystal thin films for improving optoelectronic performances[J]. Optical Materials, 2021, 117: 111074.

    [76] [76] WU J M, ZHANG Y Q, YANG S, et al. Thin MAPb0.5Sn0.5I3 perovskite single crystals for sensitive infrared light detection[J]. Frontiers in Chemistry, 2022, 9: 821699.

    [77] [77] CHEN F T, LI C Q, SHANG C Y, et al. Ultrafast response of centimeter scale thin CsPbBr3 single crystal film photodetector for optical communication[J]. Small, 2022, 18(45): e2203565.

    [78] [78] BAO C X, CHEN Z L, FANG Y J, et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals[J]. Advanced Materials, 2017, 29(39): 1703209.

    [79] [79] WU X J, LI P P, WEI X F, et al. All-inorganic perovskite single crystals for optoelectronic detection[J]. Crystals, 2022, 12(6): 792.

    [80] [80] LI W G, WANG X D, LIAO J F, et al. Enhanced on-off ratio photodetectors based on lead-free Cs3Bi2I9 single crystal thin films[J]. Advanced Functional Materials, 2020, 30(12): 1909701.

    [81] [81] ZHAO J J, KONG G L, CHEN S L, et al. Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells[J]. Science Bulletin, 2017, 62(17): 1173-1176.

    [82] [82] CHEN Z L, TUREDI B, ALSALLOUM A Y, et al. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency[J]. ACS Energy Letters, 2019, 4(6): 1258-1259.

    [83] [83] ALSALLOUM A Y, TUREDI B, ZHENG X P, et al. Low-temperature crystallization enables 21.9% efficient single-crystal MAPbI3 inverted perovskite solar cells[J]. ACS Energy Letters, 2020, 5(2): 657-662.

    [84] [84] ALSALLOUM A Y, TUREDI B, ALMASABI K, et al. 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap[J]. Energy & Environmental Science, 2021, 14(4): 2263-2268.

    [85] [85] ALMASABI K, ZHENG X P, TUREDI B, et al. Hole-transporting self-assembled monolayer enables efficient single-crystal perovskite solar cells with enhanced stability[J]. ACS Energy Letters, 2023, 8(2): 950-956.

    [86] [86] LI N, FENG A B, GUO X B, et al. Engineering the hole extraction interface enables single-crystal MAPbI3 perovskite solar cells with efficiency exceeding 22% and superior indoor response[J]. Advanced Energy Materials, 2022, 12(7): 2103241.

    [87] [87] YU W L, LI F, YU L Y, et al. Single crystal hybrid perovskite field-effect transistors[J]. Nature Communications, 2018, 9: 5354.

    [88] [88] CHEN W J, HUANG Z M, YAO H T, et al. Highly bright and stable single-crystal perovskite light-emitting diodes[J]. Nature Photonics, 2023, 17: 401-407.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Qingwen, SHAN Dongming, ZHANG Hu, DING Ran. Research Progress on Preparation of Organic-Inorganic Hybrid Lead Halide Perovskite Single-Crystalline Thin-Films by Solution-Processed Space-Confined Method and Their Device Applications[J]. Journal of Synthetic Crystals, 2024, 53(4): 572

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 20, 2023

    Accepted: --

    Published Online: Aug. 22, 2024

    The Author Email: Ran DING (dingran@jlu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics