Infrared and Laser Engineering, Volume. 51, Issue 11, 20220527(2022)
Advances in biological imaging applications of fluorescent gold nanoclusters (invited)
[1] Higaki T, Li Y W, Zhao S, et al. Atomically tailored gold nanoclusters for catalytic application[J]. Angewandte Chemie International Edition, 58, 8291-8302(2019).
[2] Kang X, Zhu M Z. Tailoring the photoluminescence of atomically precise nanoclusters[J]. Chemical Society Reviews, 48, 2422-2457(2019).
[3] Shang L, Xu J, Nienhaus G U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis[J]. Nano Today, 28, 100767(2019).
[4] Liang Y, Sun F, Shang L. Colorimetric sensing based on enzyme-mimetic activity of gold nanoclusters[J]. Chinese Journal of Analytical Chemistry, 49, 931-940(2021).
[5] Sun P P, Sun D, Xin X. Supramolecular self-assembly and application of metal clusters[J]. Chinese Science Bulletin, 66, 1717-1732(2021).
[6] Wang Z J, Li Q, Tan L L, et al. Metal-organic frameworks-mediated assembly of gold nanoclusters for sensing applications[J]. Journal of Analysis and Testing, 6, 163-177(2022).
[7] van de Looij S M, Hebels E R, Viola M, et al. Gold nanoclusters: imaging, therapy, and theranostic roles in biomedical applications[J]. Bioconjugate Chemistry, 33, 4-23(2021).
[8] Cifuentes-Rius A, Deepagan V G, Xie J, et al. Bright future of gold nanoclusters in theranostics[J]. ACS Applied Materials & Interfaces, 13, 49581-49588(2021).
[9] Shen H, Wu Q, Malola S, et al. N-heterocyclic carbene-stabilized gold nanoclusters with organometallic motifs for promoting catalysis[J]. Journal of the American Chemical Society, 144, 10844-10853(2022).
[10] Wang S, Li Y, Zhu M. Progress in synthesis of thiolated metal nanoclusters with precise size[J]. Journal of Anhui University(Natural Science Edition), 41, 1-14(2017).
[11] Xu J, Li J, Zhong W, et al. The density of surface ligands regulates the luminescence of thiolated gold nanoclusters and their metal ion response[J]. Chinese Chemical Letters, 32, 2390-2394(2021).
[12] Zhong W, Yan X, Qu S, et al. Site-specific fabrication of gold nanocluster-based fluorescence photoswitch enabled by the dual roles of albumin proteins[J]. Aggregate, 3, e245(2022).
[13] Shang L, Wen M. Recent progress in exploring the biological interactions of water-soluble fluorescent gold and silver nanoclusters[J]. Journal of Anhui University (Natural Science Edition), 41, 38-45(2017).
[14] Yu Y, Mok B Y, Loh X J, et al. Rational design of biomolecular templates for synthesizing multifunctional noble metal nanoclusters toward personalized theranostic applications[J]. Advanced Healthcare Materials, 5, 1844-1859(2016).
[15] Deepagan V G, Leiske M N, Fletcher N L, et al. Engineering fluorescent gold nanoclusters using xanthate-functionalized hydrophilic polymers: toward enhanced monodispersity and stability[J]. Nano Letters, 21, 476-484(2020).
[16] Dai Z, Tan Y, He K, et al. Strict DNA valence control in ultrasmall thiolate-protected near-infrared-emitting gold nanoparticles[J]. Journal of the American Chemical Society, 142, 14023-14027(2020).
[17] Chen Y, Zeng C, Kauffman D R, et al. Tuning the magic size of atomically precise gold nanoclusters via isomeric methylbenzenethiols[J]. Nano Letters, 15, 3603-3609(2015).
[18] Xie J, Zheng Y, Ying J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. Journal of the American Chemical Society, 131, 888-889(2009).
[19] Hu C, Zha R, Ling Q, et al. Super-resolution microscopy applications and development in living cell[J]. Infrared and Laser Engineering, 46, 1103002(2017).
[20] Yang M, Fan J, Du J, et al. Small-molecule fluorescent probes for imaging gaseous signaling molecules: current progress and future implications[J]. Chemical Science, 11, 5127-5141(2020).
[21] Huang Y, Fuksman L, Zheng J. Luminescence mechanisms of ultrasmall gold nanoparticles[J]. Dalton Transactions, 47, 6267-6273(2018).
[22] Maity S, Bain D, Patra A. An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications[J]. Nanoscale, 11, 22685-22723(2019).
[23] Wang S, Meng X, Das A, et al. A 200-fold quantum yield boost in the photoluminescence of silver-doped Ag
[24] Yao C, Xu C Q, Park I H, et al. Giant emission enhancement of solid-state gold nanoclusters by surface engineering[J]. Angewandte Chemie International Edition, 59, 8270-8276(2020).
[25] Zhang X, Wu F G, Liu P, et al. Enhanced fluorescence of gold nanoclusters composed of HAuCl4 and histidine by glutathione: glutathione detection and selective cancer cell imaging[J]. Small, 10, 5170-5177(2014).
[26] Deng H-H, Shi X Q, Wang F F, et al. Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host–guest recognition[J]. Chemistry of Materials, 29, 1362-1369(2017).
[27] Deng H, Huang K, Xiu L, et al. Bis-Schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level[J]. Nature Communications, 13, 3381(2022).
[28] Luo Z, Yuan X, Yu Y, et al. From aggregation-induced emission of Au (I)-thiolate complexes to ultrabright Au (0)@ Au (I)-thiolate core–shell nanoclusters[J]. Journal of the American Chemical Society, 134, 16662-16670(2012).
[29] Yahia-Ammar A, Sierra D, Merola F, et al. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery[J]. ACS Nano, 10, 2591-2599(2016).
[30] Goswami N, Lin F, Liu Y, et al. Highly luminescent thiolated gold nanoclusters impregnated in nanogel[J]. Chemistry of Materials, 28, 4009-4016(2016).
[31] Qu G, Jiang T, Liu T, et al. Multifunctional host polymers assist Au nanoclusters achieve high quantum yield and mitochondrial imaging[J]. ACS Applied Materials & Interfaces, 14, 2023-2028(2021).
[32] Huang K, Fang Q, Sun W, et al. Cucurbit [n] uril supramolecular assemblies-regulated charge transfer for luminescence switching of gold nanoclusters[J]. The Journal of Physical Chemistry Letters, 13, 419-426(2022).
[33] Yang L, Shang L, Nienhaus G U. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells[J]. Nanoscale, 5, 1537-1543(2013).
[34] Shang L, Yang L, Wang H, et al. In situ monitoring of the intracellular stability of nanoparticles by using fluorescence lifetime imaging[J]. Small, 12, 868-873(2016).
[35] Yang Y, Wang S X, Xu C Z, et al. Improved fluorescence imaging and synergistic anticancer phototherapy of hydrosoluble gold nanoclusters assisted by a novel two-level mesoporous canal structured silica nanocarrier[J]. Chemical Communications, 54, 2731-2734(2018).
[36] Qiao J, Mu X Y, Qi L, et al. Folic acid-functionalized fluorescent gold nanoclusters with polymers as linkers for cancer cell imaging[J]. Chemical Communications, 49, 8030-8032(2013).
[37] Xu M M, Jia T T, Li B, et al. Tuning the properties of atomically precise gold nanoclusters for biolabeling and drug delivery[J]. Chemical Communications, 56, 8766-8769(2020).
[38] Pyo K, Ly N H, Yoon S Y, et al. Highly luminescent folate-functionalized Au22 nanoclusters for bioimaging[J]. Advanced Healthcare Materials, 6, 1700203(2017).
[39] Zhang X, Liu W, Wang H, et al. Self-assembled thermosensitive luminescent nanoparticles with peptide-Au conjugates for cellular imaging and drug delivery[J]. Chinese Chemical Letters, 31, 859-864(2020).
[40] Zhao J Y, Cui R, Zhang Z L, et al. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters[J]. Nanoscale, 6, 13126-13134(2014).
[41] Yang Y, Wang S X, Chen S, et al. Switching the subcellular organelle targeting of atomically precise gold nanoclusters by modifying the capping ligand[J]. Chemical Communications, 54, 9222-9225(2018).
[42] Cui L, Li C, Chen B, et al. Surface functionalized red fluorescent dual-metallic Au/Ag nanoclusters for endoplasmic reticulum imaging[J]. Microchimica Acta, 187, 606(2020).
[43] Wang Y, Liang S, Mei M L, et al. Sensitive and stable thermometer based on the long fluorescence lifetime of Au nanoclusters for mitochondria[J]. Analytical Chemistry, 93, 15072-15079(2021).
[44] Shang L, Stockmar F, Azadfar N, et al. Intracellular thermometry by using fluorescent gold nanoclusters[J]. Angewandte Chemie International Edition, 52, 11154-11157(2013).
[45] Shang L, Azadfar N, Stockmar F, et al. One-pot synthesis of near-Infrared fluorescent gold clusters for cellular fluorescence lifetime imaging[J]. Small, 7, 2614-2620(2011).
[46] He K, Yu S, Wang X, et al. The fabrication of transferrin-modified two-photon gold nanoclusters with near-infrared fluorescence and their application in bioimaging[J]. Chemical Communications, 57, 10391-10394(2021).
[47] Wei Z, Pan Y, Hou G, et al. Excellent multiphoton excitation fluorescence with large multiphoton absorption cross sections of arginine-modified gold nanoclusters for bioimaging[J]. ACS Applied Materials & Interfaces, 14, 2452-2463(2022).
[48] Yang H, Wu Y, Ruan H, et al. Surface-engineered gold nanoclusters for stimulated emission depletion and correlated light and electron microscopy imaging[J]. Analytical Chemistry, 94, 3056-3064(2022).
[49] Yadav A, Verma N C, Rao C, et al. Bovine serum albumin-conjugated red emissive gold nanocluster as a fluorescent nanoprobe for super-resolution microscopy[J]. The Journal of Physical Chemistry Letters, 11, 5741-5748(2020).
[50] Xu J, Shang L. Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging[J]. Chinese Chemical Letters, 29, 1436-1444(2018).
[51] Le Guevel X, Wegner K D, Wuerth C, et al. Tailoring the SWIR emission of gold nanoclusters by surface ligand rigidification and their application in 3D bioimaging[J]. Chemical Communications, 58, 2967-2970(2022).
[52] Yang Y, Yu Y, Chen H, et al. Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging[J]. ACS Nano, 14, 13536-13547(2020).
[53] Wang W, Kong Y, Jiang J, et al. Engineering the protein corona structure on gold nanoclusters enables red-shifted emissions in the second near-infrared window for gastrointestinal imaging[J]. Angewandte Chemie International Edition, 59, 22431-22435(2020).
[54] Li D, Liu Q, Qi Q, et al. Gold nanoclusters for NIR-II fluorescence imaging of bones[J]. Small, 16, 2003851(2020).
[55] Song X, Zhu W, Ge X, et al. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging[J]. Angewandte Chemie International Edition, 60, 1306-1312(2021).
[56] Yu Z, Musnier B, Wegner K D, et al. High-resolution shortwave infrared imaging of vascular disorders using gold nanoclusters[J]. ACS Nano, 14, 4973-4981(2020).
[57] Li S, Ma Q, Wang C, et al. Near-infrared II gold nanocluster assemblies with improved luminescence and biofate for in vivo ratiometric imaging of H2S[J]. Analytical Chemistry, 94, 2641-2647(2022).
[58] Zhao H, Wang H, Li H, et al. Magnetic and near-infrared-II fluorescence Au-Gd nanoclusters for imaging-guided sensitization of tumor radiotherapy[J]. Nanoscale Advances, 4, 1815-1826(2022).
[59] Tang H, Li Q, Yan W, et al. Reversing the chirality of surface ligands can improve the biosafety and pharmacokinetics of cationic gold nanoclusters[J]. Angewandte Chemie International Edition, 60, 13829-13834(2021).
[60] Qu S, Jia Q, Li Z, et al. Chiral NIR-II fluorescent Ag2S quantum dots with stereospecific biological interactions and tumor accumulation behaviors[J]. Science Bulletin, 67, 1274-1283(2022).
Get Citation
Copy Citation Text
Wencheng Zhong, Wenfeng Guo, Li Shang. Advances in biological imaging applications of fluorescent gold nanoclusters (invited)[J]. Infrared and Laser Engineering, 2022, 51(11): 20220527
Category: Special issue-Fluorescence microscopy: techniques and applications
Received: Jul. 29, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: