Acta Optica Sinica, Volume. 42, Issue 24, 2428003(2022)

Cloud Detection Algorithm of Micro-Pulse Lidar Based on Bidirectional Reconstruction of Backscatter Signal

Yuanyuan Meng1, Jianhua Chang1,2、*, Sicheng Chen1, Mei Zhou1, Tengfei Dai1,2, Boye Wang1, and Yansong Jiang1
Author Affiliations
  • 1School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • 2Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • show less
    References(29)

    [1] Zhang H, Wang F, Wang F et al. Advances in cloud radiative feedbacks in global climate change[J]. Scientia Sinica: Terrae, 52, 400-417(2022).

    [2] Stapf J, Ehrlich A, Jäkel E et al. Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo-cloud interactions[J]. Atmospheric Chemistry and Physics, 20, 9895-9914(2020).

    [3] Zhu S Z, Bu L B, Liu J Q et al. Study on airborne high spectral resolution lidar detecting optical properties and pollution of atmospheric aerosol[J]. Chinese Journal of Lasers, 48, 1710003(2021).

    [4] Chang Y Y, Sun B, Huang S et al. Cloud detection and parameter inversion using multi-directional polarimetric observations[J]. Acta Optica Sinica, 40, 1101002(2020).

    [5] Lohmann U, Gasparini B. A cirrus cloud climate dial?[J]. Science, 357, 248-249(2017).

    [6] Thorsen T J, Fu Q, Comstock J M. Cloud effects on radiative heating rate profiles over Darwin using ARM and A-train radar/lidar observations[J]. Journal of Geophysical Research: Atmospheres, 118, 5637-5654(2013).

    [7] Qin D, Stocker T, Boschung J et al. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[J]. Computational Geometry, 18, 95-123(2013).

    [8] Mo W Q, Yin S X. A comparative analysis of cloud height measurement by lidar and artificial observation[C](2015).

    [9] Wang H T, Wang Y C, Wang Y Q et al. Cloud detection of Landsat image based on MS-UNet[J]. Laser & Optoelectronics Progress, 58, 1401002(2021).

    [10] Wang J, Cui T X, Wang Y et al. Cloud detection for GF-5 visible-shortwave infrared advanced hyperspectral image[J]. Acta Optica Sinica, 41, 0928003(2021).

    [11] Hu F C, Wang Z H, Zhang B et al. Study on method for determining atmospheric aerosol type using remote sensing experimental data[J]. Chinese Journal of Lasers, 36, 312(2009).

    [12] Nouri B, Kuhn P, Wilbert S et al. Cloud height and tracking accuracy of three all sky imager systems for individual clouds[J]. Solar Energy, 177, 213-228(2019).

    [13] Cheng Z J, Wei M, Zhu Y P et al. Cloud type identification for a landfalling typhoon based on millimeter-wave radar range-height-indicator data[J]. Frontiers of Earth Science, 13, 829-835(2019).

    [14] He J F, Liu W Q, Zhang Y J et al. Atomosphere boundary layer height determination and observation from ceilometer measurements over Hefei during the total solar on July 22, 2009 eclipse[J]. Chinese Optics Letters, 8, 439-442(2010).

    [15] Zhang J Q, Li Z Q, Chen H B et al. Validation of a radiosonde-based cloud layer detection method against a ground-based remote sensing method at multiple ARM sites[J]. Journal of Geophysical Research: Atmospheres, 118, 846-858(2013).

    [16] Di H G, Hua D X. Research progress of lidar in cloud detection[J]. Acta Optica Sinica, 42, 0600002(2022).

    [17] Chen S C, Chang J H, Liu Z X et al. Double-threshold lidar cloud layer detection algorithm based on cluster analysis[J]. Chinese Journal of Lasers, 49, 1110001(2022).

    [18] Mao F Y, Gong W, Li J et al. Cloud detection and parameter retrieval based on improved differential zero-crossing method for Mie lidar[J]. Acta Optica Sinica, 30, 3097-3102(2010).

    [19] Pal S R, Steinbrecht W, Carswell A I. Automated method for lidar determination of cloud-base height and vertical extent[J]. Applied Optics, 31, 1488-1494(1992).

    [20] Zhao C F, Wang Y Z, Wang Q Q et al. A new cloud and aerosol layer detection method based on micropulse lidar measurements[J]. Journal of Geophysical Research: Atmospheres, 119, 6788-6802(2014).

    [21] Mao F Y, Gong W, Zhu Z M. Simple multiscale algorithm for layer detection with lidar[J]. Applied Optics, 50, 6591-6598(2011).

    [22] Chen S Y, Wang J Q, Chen H et al. Lidar cloud detection based on improved simple multiscale method[J]. Infrared and Laser Engineering, 49, 20200379(2020).

    [23] Wang Z E, Sassen K. Cloud type and macrophysical property retrieval using multiple remote sensors[J]. Journal of Applied Meteorology, 40, 1665-1682(2001).

    [24] Wang Z E, Sassen K. Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part II: midlatitude cirrus microphysical and radiative properties[J]. Journal of the Atmospheric Sciences, 59, 2291-2302(2002).

    [25] Campbell J R, Hlavka D L, Welton E J et al. Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: instruments and data processing[J]. Journal of Atmospheric and Oceanic Technology, 19, 431-442(2002).

    [26] Cromwell E, Flynn D. Lidar cloud detection with fully convolutional networks[C], 619-627(2019).

    [27] Flynn D, Sivaraman C, Comstock J et al. Micropulse Lidar Cloud Mask (MPLCMASK) value-added product for the fast-switching polarized micropulse lidar technical report[R](2020).

    [28] Mo X Y, Li H, Zhang L. Increasing importance of aerosol-cloud interaction studies in the context of global climate change[J]. Science & Technology Review, 35, 135-136(2017).

    [29] Xie Y H, Dai C H, Wang Y F et al. Approximation of a melting plateau of large area HTFP cells used for spectral irradiance realization[J]. Applied Optics, 60, 1827-1833(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yuanyuan Meng, Jianhua Chang, Sicheng Chen, Mei Zhou, Tengfei Dai, Boye Wang, Yansong Jiang. Cloud Detection Algorithm of Micro-Pulse Lidar Based on Bidirectional Reconstruction of Backscatter Signal[J]. Acta Optica Sinica, 2022, 42(24): 2428003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Feb. 24, 2022

    Accepted: May. 18, 2022

    Published Online: Dec. 14, 2022

    The Author Email: Chang Jianhua (jianhuachang@nuist.edu.cn)

    DOI:10.3788/AOS202242.2428003

    Topics