Chinese Optics, Volume. 16, Issue 5, 1022(2023)

Super-resolution reconstruction for colorectal endoscopic images based on a residual network

Yue-kun ZHENG1,2, Ming-feng GE2、*, Zhi-min CHANG2, and Wen-fei DONG1,2
Author Affiliations
  • 1School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
  • 2Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
  • show less
    Figures & Tables(15)
    Architecture of SMRAN
    Res-Sobel Block
    Multi-scale feature extraction block(MEB)
    CBAM attention mechanism
    SMRAB Structure
    PSNR curve of validation set
    SSIM curve of validation set
    Comparison of reconstruction effects of endoscopic images of colorectal polyps using different super-resolution algorithms
    Improvement of optical resolution by SMRAN model
    • Table 1. PSNR values of different algorithms on the testing set (Unit: dB)

      View table
      View in Article

      Table 1. PSNR values of different algorithms on the testing set (Unit: dB)

      算法PSNR(dB)
      ×2×3×4
      Bicubic33.8531.9429.91
      SRCNN36.7034.5332.04
      FSRCNN37.6335.2232.23
      EDSR37.3435.2532.13
      ESPCN36.7534.7831.38
      RCAN39.0435.6333.86
      本文算法39.6936.9234.25
    • Table 2. SSIM values of different algorithms on the testing set

      View table
      View in Article

      Table 2. SSIM values of different algorithms on the testing set

      算法SSIM
      ×2×3×4
      Bicubic0.91210.88240.8103
      SRCNN0.94000.89830.8642
      FSRCNN0.93820.91320.8660
      EDSR0.93250.91580.8401
      ESPCN0.93920.90030.8566
      RCAN0.94830.91820.8667
      本文算法0.95590.92490.8675
    • Table 3. PSNR and SSIM values for different loss functions

      View table
      View in Article

      Table 3. PSNR and SSIM values for different loss functions

      损失函数PSNR(dB)SSIM
      ${L_1}$34.270.8664
      ${L_1}$+MS_SSIM 34.250.8675
    • Table 4. The impact of each module on performance

      View table
      View in Article

      Table 4. The impact of each module on performance

      Res-Sobel BlockMEBCBAMPSNR(dB)/SSIM
      33.33/0.8577
      33.39/0.8601
      33.47/0.8609
      34.25/0.8675
    • Table 5. PSNR values of different algorithms on the Kvasir-SEG dataset (Unit: dB)

      View table
      View in Article

      Table 5. PSNR values of different algorithms on the Kvasir-SEG dataset (Unit: dB)

      算法PSNR(dB)
      ×2×3×4
      Bicubic37.3533.8631.78
      SRCNN39.9835.9833.23
      FSRCNN40.6236.5733.68
      EDSR40.9436.6933.99
      ESPCN39.7135.9133.01
      RCAN41.5837.6234.23
      本文算法41.8037.8134.56
    • Table 6. SSIM values of different algorithms on the Kvasir-SEG dataset

      View table
      View in Article

      Table 6. SSIM values of different algorithms on the Kvasir-SEG dataset

      算法SSIM
      ×2×3×4
      Bicubic0.97760.94690.9079
      SRCNN0.98330.96580.9242
      FSRCNN0.98590.96720.9256
      EDSR0.98670.96690.9219
      ESPCN0.98860.97100.9396
      RCAN0.98590.97020.9447
      本文算法0.98840.97140.9456
    Tools

    Get Citation

    Copy Citation Text

    Yue-kun ZHENG, Ming-feng GE, Zhi-min CHANG, Wen-fei DONG. Super-resolution reconstruction for colorectal endoscopic images based on a residual network[J]. Chinese Optics, 2023, 16(5): 1022

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Nov. 29, 2022

    Accepted: Mar. 15, 2023

    Published Online: Oct. 27, 2023

    The Author Email:

    DOI:10.37188/CO.2022-0247

    Topics