Optical Communication Technology, Volume. 49, Issue 4, 92(2025)
Photon-number-resolving QPSK quantum-enhanced receiver scheme based on storage ring
[1] [1] KIKUCHI K. Fundamentals of coherent optical fiber communications[J]. Journal of Lightwave Technology,2016,34(1):157-179.
[2] [2] ZHAO M F,YUAN R Z,CHENG J L,et al. Security of binary modulated continuous variable quantum key distribution using optimally displaced threshold detection [J]. IEEE Communications Letters,2021,25(4):1089-1093.
[3] [3] GIOVANNETTI V,GUHA S,LLOYD S,et al. Classical capacity of the lossy bosonic channel:the exact solution [J]. Physical Review Letters,2004,92(2):027902-1-027902-12
[4] [4] HELSTROM C W. Quantum detection and estimation theory[J]. Journal of Statistical Physics,1969,1(2):231-252.
[5] [5] HELSTROM C W. Detection theory and quantum mechanics [J]. Information and Control,1967,10(3):254-291.
[6] [6] HELSTROM C W,LIU J W S,GORDON J P. Quantum-mechanical communication theory[J]. Proceedings of the IEEE,1970,58(10):1578-1598.
[7] [7] FENG X L,WU Z H,WANG T S,et al. Experimental demonstration of bidirectional up to 40 Gbit/s QPSK coherent free-space optical communication link over~1 km[J]. Optics Communications,2018,410:674-679.
[8] [8] EL-NAHAL F I. Coherent quadrature phase shift keying optical communication systems[J]. Optoelectronics Letters,2018,14(5):372-375.
[9] [9] BECERRA F E,FAN J,BAUMGARTNER G,et al. Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination[J]. Nature Photonics,2013,7:147-152.
[10] [10] HELSTROM C W. Quantum detection and estimation theory[M]. Amsterdam:Elsevier,1976.
[13] [13] BURENKOV I A,JABIR M V,POLYAKOV S V. Practical quantum-enhanced receivers for classical communication[J]. AVS Quantum Science,2021,3(2):025301-1-025301-13.
[14] [14] SHCHERBATENKO M L,ELEZOV M S,GOLTSMAN G N,et al. Sub-shotnoise-limited fiber-optic quantum receiver[J]. Physical Review A,2020,101(3):032306-1-032306-12.
[15] [15] WEI C J,ZHOU X L,WANG L D,et al. Soft iterative quantum receivers approaching the helstrom limit using realistic quantum devices [J]. IEEE Access,2018(6):10197-10207.
[16] [16] IZUMI S,NEERGAARD-NIELSEN J S,ANDERSEN U L. Adaptive generalized measurement for unambiguous state discrimination of quaternary phase-shift-keying coherent states [J]. PRX Quantum,2021,2(2):020305-1-020305-12
[19] [19] SULLIVAN M,BRAVERMAN B,UPHAM J,et al. Photon number resolving detection with a single-photon detector and adaptive storage loop[J]. New Journal of Physics,2024,26(4):043026-1-043026-6.
[20] [20] IZUMI S,NEERGAARD-NIELSEN J S,MIKI S,et al. Experimental demonstration of a quantum receiver beating the standard quantum limit at telecom wavelength[J]. Physical Review Applied,2020,13(5):054015-1-054015-12.
[21] [21] SYCH D,LEUCHS G. Practical receiver for optimal discrimination of binary coherent signals [J]. Physical Review Letters,2016,117(20):200501-1-200501-13.
[22] [22] JABIR M V,BURENKOV I A,ANNAFIANTO N F R,et al. Experimental demonstration of the near-quantum optimal receiver [J]. OSA Continuum,2020,3(12):3324-3331.
[23] [23] FERDINAND A R,DIMARIO M T,BECERRA F E. Multi-state discrimination below the quantum noise limit at the single-photonlevel [J]. NPJ Quantum Information,2017,3:43-48.
[24] [24] BECERRA F E,FAN J,MIGDALL A. Photon number resolution enables quantum receiver for realistic coherent optical communications [J]. Nature Photonics,2015,9(1):48-53.
Get Citation
Copy Citation Text
WEN Kai, BAI Enhao, YU Junyi, ZHANG Zhenrong, DONG Shuqiu. Photon-number-resolving QPSK quantum-enhanced receiver scheme based on storage ring[J]. Optical Communication Technology, 2025, 49(4): 92
Category:
Received: May. 7, 2025
Accepted: Sep. 15, 2025
Published Online: Sep. 15, 2025
The Author Email: