Chinese Journal of Lasers, Volume. 50, Issue 21, 2107402(2023)
Research Advances and Sensitization Strategies for Surface Plasmon Resonance Sensors
[1] Zeng S W, Baillargeat D, Ho H P et al. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications[J]. Chemical Society Reviews, 43, 3426-3452(2014).
[2] Philip A, Kumar A R. The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: a review[J]. Coordination Chemistry Reviews, 458, 214424(2022).
[3] Hassan M M, Sium F S, Islam F et al. A review on plasmonic and metamaterial based biosensing platforms for virus detection[J]. Sensing and Bio-Sensing Research, 33, 100429(2021).
[4] Wang X, Hou T, Lin H Y et al. In situ template generation of silver nanoparticles as amplification tags for ultrasensitive surface plasmon resonance biosensing of microRNA[J]. Biosensors and Bioelectronics, 137, 82-87(2019).
[5] Nie W Y, Wang Q, Yang X H et al. High sensitivity surface plasmon resonance biosensor for detection of microRNA based on gold nanoparticles-decorated molybdenum sulfide[J]. Analytica Chimica Acta, 993, 55-62(2017).
[6] Yi R M, Zhang Z, Liu C X et al. Gold nanoparticles-enhanced gold-silver alloy surface plasmon resonance sensor for the detection of C-reactive protein[C], 11075_63(2019).
[7] Shrivastav A M, Cvelbar U, Abdulhalim I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics[J]. Communications Biology, 4, 70(2021).
[8] Xu H X, Xu B, Xiong J C et al. Research progress of surface plasmon resonance and local surface plasmon resonance in virus detection[J]. Chinese Journal of Lasers, 49, 1507401(2022).
[9] Su R X, Liu X, Che J J et al. Detection and drug evaluation of COVID-19 based on surface plasmon resonance sensor[J]. Journal of Tianjin University (Science and Technology), 56, 1-10(2023).
[10] Che J, Shao Z J. Application of the surface plasmon resonance technique in the vaccine field[J]. Chinese Journal of Vaccines and Immunization, 28, 475-480(2022).
[11] Li F, Chen Y Y, Wei J Y et al. Application and prospect of surface plasmon resonance in drug research[J]. Chinese Journal of Drug Dependence, 29, 406-410(2020).
[12] Asghari A, Wang C, Yoo K M et al. Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: opportunities and challenges[J]. Applied Physics Reviews, 8, 031313(2021).
[13] Raether H. Surface plasmons on smooth surfaces[M]. Springer tracts in modern physics, 111, 4-39(1988).
[14] Laplatine L, Leroy L, Calemczuk R et al. Spatial resolution in prism-based surface plasmon resonance microscopy[J]. Optics Express, 22, 22771-22785(2014).
[15] Baganizi D R, Leroy L, Laplatine L et al. A simple microfluidic platform for long-term analysis and continuous dual-imaging detection of T-cell secreted IFN-γ and IL-2 on antibody-based biochip[J]. Biosensors, 5, 750-767(2015).
[16] Thiel A J, Frutos A G, Jordan C E et al. In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces[J]. Analytical Chemistry, 69, 4948-4956(1997).
[17] Zeng Y J, Zhou J E, Sang W et al. High-sensitive surface plasmon resonance imaging biosensor based on dual-wavelength differential method[J]. Frontiers in Chemistry, 9, 801355(2021).
[18] Löfås S, Malmqvist M, Rönnberg I et al. Bioanalysis with surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 5, 79-84(1991).
[19] Dougherty G. A compact optoelectronic instrument with a disposable sensor based on surface plasmon resonance[J]. Measurement Science and Technology, 4, 697-699(1993).
[20] Huang Y H, Ho H P, Wu S Y et al. Detecting phase shifts in surface plasmon resonance: a review[J]. Advances in Optical Technologies, 2012, 1-12(2012).
[21] Kumbhat S, Gehlot R, Sharma K et al. Surface plasmon resonance based indirect immunoassay for detection of 17β-estradiol[J]. Journal of Pharmaceutical and Biomedical Analysis, 163, 211-216(2019).
[22] An N, Li K, Zhang Y K et al. A multiplex and regenerable surface plasmon resonance (MR-SPR) biosensor for DNA detection of genetically modified organisms[J]. Talanta, 231, 122361(2021).
[23] Thadson K, Sasivimolkul S, Suvarnaphaet P et al. Measurement precision enhancement of surface plasmon resonance based angular scanning detection using deep learning[J]. Scientific Reports, 12, 2052(2022).
[24] Ertürk Bergdahl G, Andersson T, Allhorn M et al. In vivo detection and absolute quantification of a secreted bacterial factor from skin using molecularly imprinted polymers in a surface plasmon resonance biosensor for improved diagnostic abilities[J]. ACS Sensors, 4, 717-725(2019).
[25] Zheng F, Chen Z, Li J F et al. A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification[J]. Advanced Science, 9, 2105231(2022).
[26] Yi R M, Zhang Z, Liu C X et al. Gold-silver alloy film based surface plasmon resonance sensor for biomarker detection[J]. Materials Science and Engineering: C, 116, 111126(2020).
[27] Chen S M, Liu Y, Yu Q X et al. Self-referencing SPR biosensing with an ultralow limit-of-detection using long-wavelength excitation[J]. Sensors and Actuators B: Chemical, 327, 128935(2021).
[28] Wang X L, Zeng Y J, Zhou J E et al. Ultrafast surface plasmon resonance imaging sensor via the high-precision four-parameter-based spectral curve readjusting method[J]. Analytical Chemistry, 93, 828-833(2021).
[29] Kochergin V E, Beloglazov A A, Valeiko M V et al. Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications[J]. Quantum Electronics, 28, 444-448(1998).
[30] Nelson S G, Johnston K S, Yee S S. High sensitivity surface plasmon resonace sensor based on phase detection[J]. Sensors and Actuators B: Chemical, 35, 187-191(1996).
[31] Deng S J, Wang P, Yu X L. Phase-sensitive surface plasmon resonance sensors: recent progress and future prospects[J]. Sensors, 17, 2819(2017).
[32] Zeng Y J, Hu R, Wang L et al. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability[J]. Nanophotonics, 6, 1017-1030(2017).
[33] Wu S Y, Ho H P, Law W C et al. Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration[J]. Optics Letters, 29, 2378(2004).
[34] Huo Z C, Li Y, Chen B et al. Recent advances in surface plasmon resonance imaging and biological applications[J]. Talanta, 255, 124213(2023).
[35] Zeng Y J, Wang X L, Zhou J E et al. Phase interrogation SPR sensing based on white light polarized interference for wide dynamic detection range[J]. Optics Express, 28, 3442-3450(2020).
[36] Miyan R B, Wang X L, Zhou J E et al. Phase interrogation surface plasmon resonance hyperspectral imaging sensor for multi-channel high-throughput detection[J]. Optics Express, 29, 31418-31425(2021).
[37] Goos F, Hänchen H. Ein neuer und fundamentaler versuch zur totalreflexion[J]. Annalen Der Physik, 436, 333-346(1947).
[38] Yin X B, Hesselink L, Liu Z W et al. Large positive and negative lateral optical beam displacements due to surface plasmon resonance[J]. Applied Physics Letters, 85, 372-374(2004).
[39] You Q, Li Z F, Jiang L Y et al. Giant tunable Goos–Hänchen shifts based on surface plasmon resonance with Dirac semimetal films[J]. Journal of Physics D: Applied Physics, 53, 015107(2020).
[40] Wang Y Y, Zeng S W, Crunteanu A et al. Targeted sub-attomole cancer biomarker detection based on phase singularity 2D nanomaterial-enhanced plasmonic biosensor[J]. Nano-Micro Letters, 13, 96(2021).
[41] Jiang L, Zeng S W, Xu Z J et al. Multifunctional hyperbolic nanogroove metasurface for submolecular detection[J]. Small, 13, 1700600(2017).
[42] Law W C, Yong K T, Baev A et al. Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement[J]. ACS Nano, 5, 4858-4864(2011).
[43] Lyon L A, Musick M D, Natan M J. Colloidal Au-enhanced surface plasmon resonance immunosensing[J]. Analytical Chemistry, 70, 5177-5183(1998).
[44] Zeng S W, Yu X, Law W C et al. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement[J]. Sensors and Actuators B: Chemical, 176, 1128-1133(2013).
[45] Golden M S, Bjonnes A C, Georgiadis R M. Distance and wavelength dependent dielectric function of Au NPs by angle-resolved SPRi[J]. Abstracts of Papers of the American Chemical Society, 240, S1-S5(2010).
[46] Yano T A, Kajisa T, Ono M et al. Ultrasensitive detection of SARS-CoV-2 nucleocapsid protein using large gold nanoparticle-enhanced surface plasmon resonance[J]. Scientific Reports, 12, 1060(2022).
[47] Zhang H, Sun Y, Wang J et al. Preparation and application of novel nanocomposites of magnetic-Au nanorod in SPR biosensor[J]. Biosensors and Bioelectronics, 34, 137-143(2012).
[48] Zagorodko O, Spadavecchia J, Serrano A Y et al. Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces[J]. Analytical Chemistry, 86, 11211-11216(2014).
[49] Lepinay S, Staff A, Ianoul A et al. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles[J]. Biosensors and Bioelectronics, 52, 337-344(2014).
[50] Stone J, Jackson S, Wright D. Biological applications of gold nanorods[J]. WIREs Nanomedicine and Nanobiotechnology, 3, 100-109(2011).
[51] Kim S, Lee S, Lee H J. An aptamer-aptamer sandwich assay with nanorod-enhanced surface plasmon resonance for attomolar concentration of norovirus capsid protein[J]. Sensors and Actuators B: Chemical, 273, 1029-1036(2018).
[52] Kim S, Lee H J. Gold nanostar enhanced surface plasmon resonance detection of an antibiotic at attomolar concentrations via an aptamer-antibody sandwich assay[J]. Analytical Chemistry, 89, 6624-6630(2017).
[53] Liu R J, Wang Q, Li Q et al. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy[J]. Biosensors and Bioelectronics, 87, 433-438(2017).
[54] Wang Q, Li Q, Yang X H et al. Graphene oxide-gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA[J]. Biosensors and Bioelectronics, 77, 1001-1007(2016).
[55] Wu Q, Sun Y, Ma P et al. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide[J]. Analytica Chimica Acta, 913, 137-144(2016).
[56] Tan J S, Chen Y Y, He J et al. Two-dimensional material-enhanced surface plasmon resonance for antibiotic sensing[J]. Journal of Hazardous Materials, 455, 131644(2023).
[57] Wu Q, Li N B, Wang Y et al. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection[J]. Biosensors and Bioelectronics, 144, 111697(2019).
[58] Mahmudin L, Suharyadi E, Utomo A B S et al. Influence of stabilizing agent and synthesis temperature on the optical properties of silver nanoparticles as active materials in surface plasmon resonance (SPR) biosensor[C], 1725, 020041(2016).
[59] Park J, Kim Y. Effect of shape of silver nanoplates on the enhancement of surface plasmon resonance (SPR) signals[J]. Journal of Nanoscience and Nanotechnology, 8, 5026-5029(2008).
[60] Wu W W, Yu X L, Wu J L et al. Surface plasmon resonance imaging-based biosensor for multiplex and ultrasensitive detection of NSCLC-associated exosomal miRNAs using DNA programmed heterostructure of Au-on-Ag[J]. Biosensors and Bioelectronics, 175, 112835(2021).
[61] Nangare S, Patil P. Chitosan mediated layer-by-layer assembly based graphene oxide decorated surface plasmon resonance biosensor for highly sensitive detection of β-amyloid[J]. International Journal of Biological Macromolecules, 214, 568-582(2022).
[62] Wu Q, Wu W, Chen F F et al. Highly sensitive and selective surface plasmon resonance biosensor for the detection of SARS-CoV-2 spike S1 protein[J]. The Analyst, 147, 2809-2818(2022).
[63] Chen H X, Qi F J, Zhou H J et al. Fe3O4@Au nanoparticles as a means of signal enhancement in surface plasmon resonance spectroscopy for thrombin detection[J]. Sensors and Actuators B: Chemical, 212, 505-511(2015).
[64] Zou F, Wang X X, Qi F J et al. Magneto-plamonic nanoparticles enhanced surface plasmon resonance TB sensor based on recombinant gold binding antibody[J]. Sensors and Actuators B: Chemical, 250, 356-363(2017).
[65] Zhao J L, Liang D L, Gao S W et al. Analyte-resolved magnetoplasmonic nanocomposite to enhance SPR signals and dual recognition strategy for detection of BNP in serum samples[J]. Biosensors and Bioelectronics, 141, 111440(2019).
[66] Jia Y T, Peng Y, Bai J L et al. Magnetic nanoparticle enhanced surface plasmon resonance sensor for estradiol analysis[J]. Sensors and Actuators B: Chemical, 254, 629-635(2018).
[67] Li Q, Dou X W, Zhao X S et al. A gold/Fe3O4 nanocomposite for use in a surface plasmon resonance immunosensor for carbendazim[J]. Microchimica Acta, 186, 313(2019).
[68] Huang X, Hu J J, Zhu H et al. Magnetic field-aligned Fe3O4-coated silver magnetoplasmonic nanochain with enhanced sensitivity for detection of Siglec-15[J]. Biosensors and Bioelectronics, 191, 113448(2021).
[69] Zhou J, Yang T Q, Chen J J et al. Two-dimensional nanomaterial-based plasmonic sensing applications: advances and challenges[J]. Coordination Chemistry Reviews, 410, 213218(2020).
[70] Singh M, Holzinger M, Tabrizian M et al. Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors[J]. Journal of the American Chemical Society, 137, 2800-2803(2015).
[71] Wu L, Chu H S, Koh W S et al. Highly sensitive graphene biosensors based on surface plasmon resonance[J]. Optics Express, 18, 14395-14400(2010).
[72] Xue T Y, Cui X Q, Guan W M et al. Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing[J]. Biosensors and Bioelectronics, 58, 374-379(2014).
[73] Hu W J, Huang Y Y, Chen C Y et al. Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification[J]. Sensors and Actuators B: Chemical, 264, 440-447(2018).
[74] Patil P O, Pandey G R, Patil A G et al. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: a review[J]. Biosensors and Bioelectronics, 139, 111324(2019).
[75] He L J, Pagneux Q, Larroulet I et al. Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips[J]. Biosensors and Bioelectronics, 89, 606-611(2017).
[76] Chiu N F, Lin T L, Kuo C T. Highly sensitive carboxyl-graphene oxide-based surface plasmon resonance immunosensor for the detection of lung cancer for cytokeratin 19 biomarker in human plasma[J]. Sensors and Actuators B: Chemical, 265, 264-272(2018).
[77] Mao Z H, Zhao J L, Chen J et al. A simple and direct SPR platform combining three-in-one multifunctional peptides for ultra-sensitive detection of PD-L1 exosomes[J]. Sensors and Actuators B: Chemical, 346, 130496(2021).
[78] Zhou C, Sun C J, Luo Z W et al. Fiber optic biosensor for detection of genetically modified food based on catalytic hairpin assembly reaction and nanocomposites assisted signal amplification[J]. Sensors and Actuators B: Chemical, 254, 956-965(2018).
[79] Li Q, Wang Q, Yang X H et al. High sensitivity surface plasmon resonance biosensor for detection of microRNA and small molecule based on graphene oxide-gold nanoparticles composites[J]. Talanta, 174, 521-526(2017).
[80] Zeng S W, Hu S Y, Xia J et al. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors[J]. Sensors and Actuators B: Chemical, 207, 801-810(2015).
[81] Chen Y F, Hu S Q, Wang H et al. MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement[J]. Advanced Optical Materials, 7, 1900479(2019).
[82] Chiu N F, Yang H T. High-sensitivity detection of the lung cancer biomarker CYFRA21-1 in serum samples using a carboxyl-MoS2 functional film for SPR-based immunosensors[J]. Frontiers in Bioengineering and Biotechnology, 8, 234(2020).
[83] Chiu N F, Tai M J, Nurrohman D T et al. Immunoassay-amplified responses using a functionalized MoS2-based SPR biosensor to detect PAPP-A2 in maternal serum samples to screen for fetal Down’s syndrome[J]. International Journal of Nanomedicine, 16, 2715-2733(2021).
[84] Xue T Y, Qi K, Hu C Q. Novel SPR sensing platform based on superstructure MoS2 nanosheets for ultrasensitive detection of mercury ion[J]. Sensors and Actuators B: Chemical, 284, 589-594(2019).
[85] Liu L X, Ye K, Lin C Q et al. Grain-boundary-rich polycrystalline monolayer WS2 film for attomolar-level Hg2+ sensors[J]. Nature Communications, 12, 3870(2021).
[86] Liu L X, Ye K, Jia Z Y et al. High-sensitivity and versatile plasmonic biosensor based on grain boundaries in polycrystalline 1L WS2 films[J]. Biosensors and Bioelectronics, 194, 113596(2021).
[87] Wu L M, You Q, Shan Y X et al. Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity[J]. Sensors and Actuators B: Chemical, 277, 210-215(2018).
[88] Yuan Y F, Yu X T, Ouyang Q et al. Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: theoretical insight[J]. 2D Materials, 5, 025015(2018).
[89] Yang W, Cheng Y Y, Jiang M S et al. Design and fabrication of an ultra-sensitive Ta2C MXene/Au-coated tilted grating sensor[J]. Sensors and Actuators B: Chemical, 369, 132391(2022).
[90] Wang Y D, Mao Z H, Chen Q et al. Rapid and sensitive detection of PD-L1 exosomes using Cu-TCPP 2D MOF as a SPR sensitizer[J]. Biosensors and Bioelectronics, 201, 113954(2022).
[91] Xue T Y, Liang W Y, Li Y W et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor[J]. Nature Communications, 10, 28(2019).
[92] Ameling R, Langguth L, Hentschel M et al. Cavity-enhanced localized plasmon resonance sensing[J]. Applied Physics Letters, 97, 253116(2010).
[93] Zeng L W, Chen M, Yan W et al. Si-grating-assisted SPR sensor with high figure of merit based on Fabry-Pérot cavity[J]. Optics Communications, 457, 124641(2020).
[94] Liu G S, Xiong X, Hu S Q et al. Photonic cavity enhanced high-performance surface plasmon resonance biosensor[J]. Photonics Research, 8, 448-456(2020).
[95] Allison G, Sana A K, Ogawa Y et al. A Fabry-Pérot cavity coupled surface plasmon photodiode for electrical biomolecular sensing[J]. Nature Communications, 12, 6483(2021).
[96] Ebbesen T W, Lezec H J, Ghaemi H F et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 391, 667-669(1998).
[97] Patching S G. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838, 43-55(2014).
[98] Kim K, Lee W, Chung K et al. Molecular overlap with optical near-fields based on plasmonic nanolithography for ultrasensitive label-free detection by light-matter colocalization[J]. Biosensors and Bioelectronics, 96, 89-98(2017).
[99] Song C Y, Jiang X Y, Yang Y J et al. High-sensitive assay of nucleic acid using tetrahedral DNA probes and DNA concatamers with a surface-enhanced Raman scattering/surface plasmon resonance dual-mode biosensor based on a silver nanorod-covered silver nanohole array[J]. ACS Applied Materials & Interfaces, 12, 31242-31254(2020).
[100] Huang L P, Ding L F, Zhou J et al. One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device[J]. Biosensors & Bioelectronics, 171, 112685(2021).
Get Citation
Copy Citation Text
Linzhi Ye, Luwei Zhang, Zhenxi Zhang, Cuiping Yao. Research Advances and Sensitization Strategies for Surface Plasmon Resonance Sensors[J]. Chinese Journal of Lasers, 2023, 50(21): 2107402
Category: Bio-Optical Sensing and Manipulation
Received: Jun. 19, 2023
Accepted: Aug. 1, 2023
Published Online: Nov. 17, 2023
The Author Email: Cuiping Yao (zsycp@xjtu.edu.cn)