Infrared and Laser Engineering, Volume. 50, Issue 9, 20210145(2021)
Advances on the measurement of orbital angular momentum spectra for laser beams (Invited)
[1] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Advances in Optics and Photonics, 8, 200-227(2016).
[2] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985).
[3] Chang G, Wei Z. Ultrafast fiber lasers: an expanding versatile toolbox[J]. iScience, 23, 101101(2020).
[4] Liu W, Liu M, Chen X, et al. Ultrafast photonics of two dimensional AuTe2Se4/3 in fiber lasers[J]. Communications Physics, 3, 1-6(2020).
[5] Fu S, Han X, Song R, et al. Generating a 64×64 beam lattice by geometric phase modulation from arbitrary incident polarizations[J]. Optics Letters, 45, 6330-6333(2020).
[6] Fu S, Wang T, Zhang Z, et al. Selective acquisition of multiple states on hybrid Poincare sphere[J]. Applied Physics Letters, 110, 191102(2017).
[7] Fu S, Gao C, Wang T, et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders[J]. Optics Letters, 41, 5454-5457(2016).
[8] Chang H, Chang Q, Xi J, et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 8, 1943-1948(2020).
[9] Lei C, Gu Y, Chen Z, et al. Incoherent beam combining of fiber lasers by an all-fiber 7× 1 signal combiner at a power level of 14 kW[J]. Optics Express, 26, 10421-10427(2018).
[10] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 3, 161-204(2011).
[11] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185(1992).
[12] Yang Y, Zhao Q, Liu L, et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates[J]. Physical Review Applied, 12, 064007(2019).
[13] Zhou H, Yang J, Gao C, et al. High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation[J]. Optical Materials Express, 9, 2699-2707(2019).
[14] Zhang J, Sun C, Xiong B, et al. An InP-based vortex beam emitter with monolithically integrated laser[J]. Nature Communications, 9, 1-6(2018).
[15] Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 338, 363-366(2012).
[16] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).
[17] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).
[18] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).
[19] Wang J. Advances in communications using optical vortices[J]. Photonics Research, 4, B14-B28(2016).
[20] Yu S. Potentials and challenges of using orbital angular momentum communications in optical interconnects[J]. Optics Express, 23, 3075-3087(2015).
[21] Fu S, Zhai Y, Zhou H, et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding[J]. Optics Letters, 44, 4753-4756(2019).
[22] Fu S, Zhai Y, Zhou H, et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying[J]. Optics Express, 27, 33111-33119(2019).
[23] Fu S, Zhai Y, Zhou H, et al. Demonstration of high-dimensional free-space data coding/decoding through multi-ring optical vortices[J]. Chinese Optics Letters, 17, 080602(2019).
[24] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 341, 537-540(2013).
[25] Lavery M P J, Barnett S M, Speirits F C, et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body[J]. Optica, 1, 1-4(2014).
[26] Fu S, Wang T, Zhang Z, et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions[J]. Optics Express, 25, 20098-20108(2017).
[27] Zhai Y, Fu S, Yin C, et al. Detection of angular acceleration based on optical rotational Doppler effect[J]. Optics Express, 27, 15518-15527(2019).
[28] Zhai Y, Fu S, Zhang J, et al. Remote detection of a rotator based on rotational Doppler effect[J]. Applied Physics Express, 13, 022012(2020).
[29] Fang L, Padgett M J, Wang J. Sharing a common origin between the rotational and linear Doppler effects[J]. Laser & Photonics Reviews, 11, 1700183(2017).
[30] Zhang W, Gao J, Zhang D, et al. Free-space remote sensing of rotation at the photon-counting level[J]. Physical Review Applied, 10, 044014(2018).
[31] Qiu S, Liu T, Ren Y, et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect[J]. Optics Express, 27, 24781-24792(2019).
[32] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).
[33] Gecevičius M, Drevinskas R, Beresna M, et al. Single beam optical vortex tweezers with tunable orbital angular momentum[J]. Applied Physics Letters, 104, 231110(2014).
[34] Liang Y, Yao B, Ma B, et al. Holographic optical trapping and manipulation based phase-only liquid-crystal spatial light modulator[J]. Acta Optica Sinca, 36, 0309001(2016).
[35] Chen M, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Optics Letters, 38, 4919-4922(2013).
[36] Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 14, 102-108(2020).
[37] Granata M, Buy C, Ward R, et al. Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors[J]. Physical Review Letters, 105, 231102(2010).
[38] Noack A, Bogan C, Willke B. Higher-order Laguerre–Gauss modes in (non-) planar four-mirror cavities for future gravitational wave detectors[J]. Optics Letters, 42, 751-754(2017).
[39] Tamburini F, Thidé B, Molina-Terriza G, et al. Twisting of light around rotating black holes[J]. Nature Physics, 7, 195-197(2011).
[40] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 1, 1-57(2009).
[41] Fu S, Gao C, Shi Y, et al. Generating polarization vortices by using helical beams and a Twyman Green interferometer[J]. Optics Letters, 40, 1775-1778(2015).
[42] Fu S, Zhai Y, Wang T, et al. Tailoring arbitrary hybrid Poincaré beams through a single hologram[J]. Applied Physics Letters, 111, 211101(2017).
[43] Song R, Gao C, Zhou H, et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm[J]. Optics Letters, 45, 4626-4629(2020).
[44] Fu S, Gao C, Wang T, et al. Anisotropic polarization modulation for the production of arbitrary Poincaré beams[J]. JOSA B, 35, 1-7(2018).
[45] Shen Y, Yang X, Naidoo D, et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser[J]. Optica, 7, 820-831(2020).
[46] Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency[J]. Journal of Physics D: Applied Physics, 32, 1455(1999).
[47] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Applied Physics A, 86, 329-334(2007).
[48] Zhao W Q, Tang F, Qiu L R, et al. Research status and application on the focusing properties of cylindrical vector beams[J]. Acta Physica Sinica, 62, 054201(2013).
[49] Zhou Z, Tan Q, Jin G. Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams[J]. Chinese Optics Letters, 8, 1178-1181(2010).
[50] Fu S Y, G C Q. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings[J]. Acta Physica Sinica, 67, 034201(2018).
[51] Sztul H I, Alfano R R. Double-slit interference with Laguerre-Gaussian beams[J]. Optics Letters, 31, 999-1001(2006).
[52] Emile O, Emile J. Young’s double-slit interference pattern from a twisted beam[J]. Applied Physics B, 117, 487-491(2014).
[53] Hickmann J M, Fonseca E J S, Soares W C, et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum[J]. Physical Review Letters, 105, 053904(2010).
[54] [54] Soares W C, Vidal I, Caetano D P, et al. Measuring bital angular momentum of a photon using the diffraction reciprocal lattice of a triangular slit[C]Frontiers in Optics, Optical Society of America, 2008: FThO2.
[55] Stahl C, Gbur G. Analytic calculation of vortex diffraction by a triangular aperture[J]. JOSA A, 33, 1175-1180(2016).
[56] Liu Y, Tao H, Pu J, et al. Detecting the topological charge of vortex beams using an annular triangle aperture[J]. Optics & Laser Technology, 43, 1233-1236(2011).
[57] Dai K, Gao C, Zhong L, et al. Measuring OAM states of light beams with gradually-changing-period gratings[J]. Optics Letters, 40, 562-565(2015).
[58] Fu S, Wang T, Gao Y, et al. Diagnostics of the topological charge of optical vortex by a phase-diffractive element[J]. Chinese Optics Letters, 14, 080501(2016).
[59] Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings[J]. Scientific Reports, 7, 40781(2017).
[60] Zhao Q, Dong M, Bai Y, et al. Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer[J]. Photonics Research, 8, 745-749(2020).
[61] Serna J, Encinas-Sanz F, Nemeş G. Complete spatial characterization of a pulsed doughnut-type beam by use of spherical optics and a cylindrical lens[J]. JOSA A, 18, 1726-1733(2001).
[62] Denisenko V, Shvedov V, Desyatnikov A S, et al. Determination of topological charges of polychromatic optical vortices[J]. Optics Express, 17, 23374-23379(2009).
[63] Alperin S N, Niederriter R D, Gopinath J T, et al. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens[J]. Optics Letters, 41, 5019-5022(2016).
[64] Vaity P, Banerji J, Singh R P. Measuring the topological charge of an optical vortex by using a tilted convex lens[J]. Physics Letters A, 377, 1154-1156(2013).
[65] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 12, 5448-5456(2004).
[66] Moreno I, Davis J A, Pascoguin B M L, et al. Vortex sensing diffraction gratings[J]. Optics Letters, 34, 2927-2929(2009).
[67] Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings[J]. Optics Letters, 35, 3495-3497(2010).
[68] Fu S, Wang T, Zhang S, et al. Integrating 5 × 5 Dammann gratings to detect orbital angular momentum states of beams with the range of −24 to +24[J]. Applied Optics, 55, 1514-1517(2016).
[69] Fu S, Zhang S, Wang T, et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices[J]. Optics Express, 24, 6240-6248(2016).
[70] Fu S, Zhai Y, Wang T, et al. Orbital angular momentum channel monitoring of coaxially multiplexed vortices by diffraction pattern analysis[J]. Applied Optics, 57, 1056-1060(2018).
[71] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 88, 257901(2002).
[72] Leach J, Courtial J, Skeldon K, et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon[J]. Physical Review Letters, 92, 013601(2004).
[73] Lavery M P J, Dudley A, Forbes A, et al. Robust interferometer for the routing of light beams carrying orbital angular momentum[J]. New Journal of Physics, 13, 093014(2011).
[74] Abouraddy A F, Yarnall T M, Saleh B E A. Angular and radial mode analyzer for optical beams[J]. Optics Letters, 36, 4683-4685(2011).
[75] Zhang W, Qi Q, Zhou J, et al. Mimicking Faraday rotation to sort the orbital angular momentum of light[J]. Physical Review Letters, 112, 153601(2014).
[76] Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010).
[77] Mirhosseini M, Malik M, Shi Z, et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 4, 1-6(2013).
[78] O’Sullivan M N, Mirhosseini M, Malik M, et al. Near-perfect sorting of orbital angular momentum and angular position states of light[J]. Optics Express, 20, 24444-24449(2012).
[79] Li C, Zhao S. Efficient separating orbital angular momentum mode with radial varying phase[J]. Photonics Research, 5, 267-270(2017).
[80] Wen Y, Chremmos I, Chen Y, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical Review Letters, 120, 193904(2018).
[81] Wen Y, Chremmos I, Chen Y, et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems[J]. Optica, 7, 254-262(2020).
[82] Lavery M P J, Robertson D J, Sponselli A, et al. Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states[J]. New Journal of Physics, 15, 013024(2013).
[83] Lavery M P J, Berkhout G C G, Courtial J, et al. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation[J]. Journal of Optics, 13, 064006(2011).
[84] Lavery M P J, Robertson D J, Berkhout G C G, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon[J]. Optics Express, 20, 2110-2115(2012).
[85] [85] Mgan K S, Raghu I S, Johnson E G. Design fabrication of diffractive optics f bital angular momentum space division multiplexing[C]Advanced Fabrication Technologies f MicroNano Optics Photonics VIII. International Society f Optics Photonics, 2015, 9374: 93740Y.
[86] Ruffato G, Massari M, Parisi G, et al. Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics[J]. Optics Express, 25, 7859-7868(2017).
[87] Lightman S, Hurvitz G, Gvishi R, et al. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing[J]. Optica, 4, 605-610(2017).
[88] Ruffato G, Girardi M, Massari M, et al. A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams[J]. Scientific Reports, 8, 1-12(2018).
[89] Walsh G F. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate[J]. Optics Express, 24, 6689-6704(2016).
[90] Walsh G F, De Sio L, Roberts D E, et al. Parallel sorting of orbital and spin angular momenta of light in a record large number of channels[J]. Optics Letters, 43, 2256-2259(2018).
[91] Ruffato G, Capaldo P, Massari M, et al. Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics[J]. Optics Express, 27, 15750-15764(2019).
[92] Fang J, Xie Z, Lei T, et al. Spin-dependent optical geometric transformation for cylindrical vector beam multiplexing communication[J]. ACS Photonics, 5, 3478-3484(2018).
[93] Malik M, Mirhosseini M, Lavery M P J, et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector[J]. Nature Communications, 5, 1-7(2014).
[94] Wang B, Wen Y, Zhu J, et al. Sorting full angular momentum states with Pancharatnam-Berry metasurfaces based on spiral transformation[J]. Optics Express, 28, 16342-16351(2020).
[95] Anguita J A, Neifeld M A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[J]. Applied Optics, 47, 2414-2429(2008).
[96] Gruneisen M T, Dymale R C, Stoltenberg K E, et al. Optical vortex discrimination with a transmission volume hologram[J]. New Journal of Physics, 13, 083030(2011).
[97] Pires H D L, Woudenberg J, Van Exter M P. Measurement of the orbital angular momentum spectrum of partially coherent beams[J]. Optics Letters, 35, 889-891(2010).
[98] Pires H D L, Florijn H C B, Van Exter M P. Measurement of the spiral spectrum of entangled two-photon states[J]. Physical Review Letters, 104, 020505(2010).
[99] Jha A K, Agarwal G S, Boyd R W. Partial angular coherence and the angular Schmidt spectrum of entangled two-photon fields[J]. Physical Review A, 84, 063847(2011).
[100] Malik M, Murugkar S, Leach J, et al. Measurement of the orbital-angular-momentum spectrum of fields with partial angular coherence using double-angular-slit interference[J]. Physical Review A, 86, 063806(2012).
[101] Jha A K, Leach J, Jack B, et al. Angular two-photon interference and angular two-qubit states[J]. Physical Review Letters, 104, 010501(2010).
[102] Belmonte A, Torres J P. Optical Doppler shift with structured light[J]. Optics Letters, 36, 4437-4439(2011).
[103] Zhou H, Fu D, Dong J, et al. Theoretical analysis and experimental verification on optical rotational Doppler effect[J]. Optics Express, 24, 10050-10056(2016).
[104] Vasnetsov M V, Torres J P, Petrov D V, et al. Observation of the orbital angular momentum spectrum of a light beam[J]. Optics Letters, 28, 2285-2287(2003).
[105] Zhou H L, Fu D Z, Dong J J, et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect[J]. Light: Science & Applications, 6, e16251(2017).
[106] Bierdz P, Deng H. A compact orbital angular momentum spectrometer using quantum zeno interrogation[J]. Optics Express, 19, 11615-11622(2011).
[107] Bierdz P, Kwon M, Roncaioli C, et al. High fidelity detection of the orbital angular momentum of light by time mapping[J]. New Journal of Physics, 15, 113062(2013).
[108] Karimi E, Marrucci L, de Lisio C, et al. Time-division multiplexing of the orbital angular momentum of light[J]. Optics Letters, 37, 127-129(2012).
[109] Clemente P, Durán V, Tajahuerce E, et al. Compressive holography with a single-pixel detector[J]. Optics Letters, 38, 2524-2527(2013).
[110] Zhang Z, Wang X, Zheng G, et al. Fast Fourier single-pixel imaging via binary illumination[J]. Scientific Reports, 7, 12029(2017).
[111] Hu X, Zhang H, Zhao Q, et al. Single-pixel phase imaging by Fourier spectrum sampling[J]. Applied Physics Letters, 114, 051102(2019).
[112] Ota K, Hayasaki Y. Complex-amplitude single-pixel imaging[J]. Optics Letters, 43, 3682-3685(2018).
[113] Liu R, Zhao S, Zhang P, et al. Complex wavefront reconstruction with single-pixel detector[J]. Applied Physics Letters, 114, 161901(2019).
[114] Zhao S, Liu R, Zhang P, et al. Fourier single-pixel reconstruction of a complex amplitude optical field[J]. Optics Letters, 44, 3278-3281(2019).
[115] Zhao S, Chen S, Wang X, et al. Measuring the complex spectrum of orbital angular momentum and radial index with a single-pixel detector[J]. Optics Letters, 45, 5990-5993(2020).
[116] Andersen J M, Alperin S N, Voitiv A A, et al. Characterizing vortex beams from a spatial light modulator with collinear phase-shifting holography[J]. Applied Optics, 58, 404-409(2019).
[117] Litvin I A, Dudley A, Roux F S, et al. Azimuthal decomposition with digital holograms[J]. Optics Express, 20, 10996-11004(2012).
[118] Zhao P, Li S, Feng X, et al. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method[J]. Optics Letters, 42, 1080-1083(2017).
[119] D’Errico A, D’Amelio R, Piccirillo B, et al. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams[J]. Optica, 4, 1350-1357(2017).
[120] Cox M A, Toninelli E, Cheng L, et al. A high-speed, wavelength invariant, single-pixel wavefront sensor with a digital micromirror device[J]. IEEE Access, 7, 85860-85866(2019).
[121] Pachava S, Dixit A, Srinivasan B. Modal decomposition of Laguerre Gaussian beams with different radial orders using optical correlation technique[J]. Optics Express, 27, 13182-13193(2019).
[122] Volyar A, Bretsko M, Akimova Y, et al. Measurement of the vortex spectrum in a vortex-beam array without cuts and gluing of the wavefront[J]. Optics Letters, 43, 5635-5638(2018).
[123] Volyar A, Bretsko M, Akimova Y, et al. Digital sorting perturbed Laguerre–Gaussian beams by radial numbers[J]. JOSA A, 37, 959-968(2020).
[124] Fu S, Zhai Y, Zhang J, et al. Universal orbital angular momentum spectrum analyzer for beams[J]. PhotoniX, 1, 19(2020).
Get Citation
Copy Citation Text
Shiyao Fu, Lei Huang, Yanlai Lv, Chunqing Gao. Advances on the measurement of orbital angular momentum spectra for laser beams (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210145
Category: Special issue-Manipulation on optical vortex and its sensing application
Received: Mar. 8, 2021
Accepted: --
Published Online: Oct. 28, 2021
The Author Email: