Journal of Synthetic Crystals, Volume. 51, Issue 12, 2104(2022)

Preparation of CsPbBr3Cs4PbBr6 Composite NCs by Ligand Assisted Mechanochemistry Method and Its Luminescence Intensity and Stability

DONG Qizheng* and HUANG Xinyi
Author Affiliations
  • [in Chinese]
  • show less
    References(43)

    [1] [1] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 36923696.

    [2] [2] LI N, XU F, QIU Z W, et al. Sealing the domain boundaries and defects passivation by poly(acrylic acid) for scalable blading of efficient perovskite solar cells[J]. Journal of Power Sources, 2019, 426: 188196.

    [3] [3] KOSCHER B A, SWABECK J K, BRONSTEIN N D, et al. Essentially trapfree CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment[J]. Journal of the American Chemical Society, 2017, 139(19): 65666569.

    [4] [4] SU Y, CHEN X J, JI W Y, et al. Highly controllable and efficient synthesis of mixedhalide CsPbX3 (X=Cl, Br, I) perovskite QDs toward the tunability of entire visible light[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 3302033028.

    [5] [5] HAMATANI T, SHIRAHATA Y, OHISHI Y, et al. Arsenic and chlorine codoping to CH3NH3PbI3 perovskite solar cells[J]. Advances in Materials Physics and Chemistry, 2017, 7(1): 110.

    [6] [6] XINGLIN Z, XINYU Z, LEI L, et al. Perovskite selfpassivation with PCBM for small opencircuit voltage loss[J]. Energy and Power Engineering, 2020(6): 257272.

    [7] [7] LEE S J, CHOI J W, KUMAR S, et al. Preparation of perovskiteembedded monodisperse copolymer particles and their application for high purity downconversion LEDs[J]. Materials Horizons, 2018, 5(6): 11201129.

    [8] [8] LI Y, SHI Z F, LEI L Z, et al. Controllable vaporphase growth of inorganic perovskite microwire networks for highefficiency and temperaturestable photodetectors[J]. ACS Photonics, 2018, 5(6): 25242532.

    [9] [9] ZOU T Y, LIU X Y, QIU R Z, et al. Enhanced UVC detection of perovskite photodetector arrays via inorganic CsPbBr3 quantum dot downconversion layer[J]. Advanced Optical Materials, 2019, 7(11): 1801812.

    [10] [10] TANG X S, ZU Z Q, SHAO H B, et al. Allinorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application[J]. Nanoscale, 2016, 8(33): 1515815161.

    [11] [11] NIU G D, LI W Z, LI J W, et al. Progress of interface engineering in perovskite solar cells[J]. Science China Materials, 2016, 59(9): 728742.

    [12] [12] PAN J, SHANG Y Q, YIN J, et al. Bidentate ligandpassivated CsPbI3 perovskite nanocrystals for stable nearunity photoluminescence quantum yield and efficient red lightemitting diodes[J]. Journal of the American Chemical Society, 2018, 140(2): 562565.

    [13] [13] HA S T, SU R, XING J, et al. Metal halide perovskite nanomaterials: synthesis and applications[J]. Chemical Science, 2017, 8(4): 25222536.

    [14] [14] ZHANG F, ZHONG H Z, CHEN C, et al. Brightly luminescent and colortunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 45334542.

    [15] [15] DU X F, WU G, CHENG J, et al. Highquality CsPbBr3 perovskite nanocrystals for quantum dot lightemitting diodes[J]. RSC Advances, 2017, 7(17): 1039110396.

    [16] [16] HUANG H, CHEN B K, WANG Z G, et al. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in allperovskite white lightemitting devices[J]. Chemical Science, 2016, 7(9): 56995703.

    [17] [17] BOUDUBAN M E F, BURGOSCAMINAL A, OSSOLA R, et al. Energy and charge transfer cascade in methylammonium lead bromide perovskite nanoparticle aggregates[J]. Chemical Science, 2017, 8(6): 43714380.

    [18] [18] PAN A Z, HE B, FAN X Y, et al. Insight into the ligandmediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors[J]. ACS Nano, 2016, 10(8): 79437954.

    [19] [19] PANG X L, SI S C, XIE L Q, et al. Regulating the morphology and luminescence properties of CsPbBr3 perovskite quantum dots through the rigidity of glass network structure[J]. Journal of Materials Chemistry C, 2020, 8(48): 1737417382.

    [20] [20] DUTTA A, DUTTA S K, DAS ADHIKARI S, et al. Tuning the size of CsPbBr3 nanocrystals: all at one constant temperature[J]. ACS Energy Letters, 2018, 3(2): 329334.

    [21] [21] CHEN J S, LIU D Z, ALMARRI M J, et al. Photostability of CsPbBr3 perovskite quantum dots for optoelectronic application[J]. Science China Materials, 2016, 59(9): 719727.

    [22] [22] SUN Y F, ZHANG H D, ZHU K, et al. Research on the influence of polar solvents on CsPbBr3 perovskite QDs[J]. RSC Advances, 2021, 11(44): 2733327337.

    [23] [23] LI J, HU Y, ZHAO J L, et al. Temperature induces the change of CsPbBr1.5I1.5 perovskite nanocrystals and affects luminescence properties[J]. Journal of Physics D: Applied Physics, 2019, 52(50): 505113.

    [24] [24] AKKERMAN Q A, D’INNOCENZO V, ACCORNERO S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions[J]. Journal of the American Chemical Society, 2015, 137(32): 1027610281.

    [25] [25] YANG D D, LI X M, ZENG H B. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability[J]. Advanced Materials Interfaces, 2018, 5(8): 1701662.

    [26] [26] WANG Q, TONG Y, YANG M T, et al. ZnO induced selfcrystallization of CsPb(Br/I)3 nanocrystal glasses with improved stability for backlight display application[J]. Journal of Materials Science & Technology, 2022, 121: 140147.

    [27] [27] WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphorconverted LEDs[J]. Chemical Society Reviews, 2019, 48(1): 310350.

    [28] [28] XU F, KONG X B, WANG W Z, et al. Quantum size effect and surface defect passivation in sizecontrolled CsPbBr3 quantum dots[J]. Journal of Alloys and Compounds, 2020, 831: 154834.

    [29] [29] PAPAVASSILIOU G C, PAGONA G, KAROUSIS N, et al. Nanocrystalline/microcrystalline materials based on leadhalide units[J]. Journal of Materials Chemistry, 2012, 22(17): 82718280.

    [30] [30] PALAZON F, EL AJJOURI Y, BOLINK H J. Making by grinding: mechanochemistry boosts the development of halide perovskites and other multinary metal halides[J]. Advanced Energy Materials, 2020, 10(13): 1902499.

    [31] [31] HERNNDEZ J G, BOLM C. Altering product selectivity by mechanochemistry[J]. The Journal of Organic Chemistry, 2017, 82(8): 40074019.

    [32] [32] ZHANG Z J, ZHU Y M, WANG W L, et al. Growth, characterization and optoelectronic applications of purephase largearea CsPb2Br5 flake single crystals[J]. Journal of Materials Chemistry C, 2018, 6(3): 446451.

    [33] [33] ACHARYYA P, PAL P, SAMANTA P K, et al. Single pot synthesis of indirect band gap 2D CsPb2Br5 nanosheets from direct band gap 3D CsPbBr3 nanocrystals and the origin of their luminescence properties[J]. Nanoscale, 2019, 11(9): 40014007.

    [34] [34] DCK K, SUCH A, KRL J, et al. On the role of Cs4PbBr6 phase in the luminescence performance of bright CsPbBr3 nanocrystals[J]. Nanomaterials, 2021, 11(8): 1935.

    [35] [35] KANG B, BISWAS K. Exploring polaronic, excitonic structures and luminescence in Cs4PbBr6/CsPbBr3[J]. The Journal of Physical Chemistry Letters, 2018, 9(4): 830836.

    [36] [36] QUAN L N, QUINTEROBERMUDEZ R, VOZNYY O, et al. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix[J]. Advanced Materials, 2017, 29(21): 1605945.

    [37] [37] LI X M, WU Y, ZHANG S L, et al. Quantum dots: CsPbX3quantum dots for lighting and displays: roomtemperature synthesis, photoluminescence superiorities, underlying origins and white lightemitting diodes[J]. Advanced Functional Materials, 2016, 26(15): 2584.

    [38] [38] WANG L, MA D C, GUO C, et al. CsPbBr3 nanocrystals prepared by high energy ball milling in onestep and structural transformation from CsPbBr3 to CsPb2Br5[J]. Applied Surface Science, 2021, 543: 148782.

    [39] [39] LIU X, LUO Z, YIN W X, et al. Methanolinduced fast CsBr release results in phasepure CsPbBr3 perovskite nanoplatelets[J]. Nanoscale Advances, 2020, 2(5): 19731979.

    [40] [40] LI Y X, HUANG H, XIONG Y, et al. Reversible transformation between CsPbBr3 and Cs4PbBr6 nanocrystals[J]. CrystEngComm, 2018, 20(34): 49004904.

    [41] [41] HUYNH K A, BAE S R, NGUYEN T V, et al. Ligandassisted sulfide surface treatment of CsPbI3 perovskite quantum dots to increase photoluminescence and recovery[J]. ACS Photonics, 2021, 8(7): 19791987.

    [42] [42] LU H G, TANG Y, RAO L S, et al. Investigating the transformation of CsPbBr3 nanocrystals into highly stable CsPbBr3/Cs4PbBr6 nanocrystals using ethyl acetate in a microchannel reactor[J]. Nanotechnology, 2019, 30(29): 295603.

    [44] [44] BAO Z, TSENG Y J, YOU W W, et al. Efficient luminescence from CsPbBr3 nanoparticles embedded in Cs4PbBr6[J]. The Journal of Physical Chemistry Letters, 2020, 11(18): 76377642.

    Tools

    Get Citation

    Copy Citation Text

    DONG Qizheng, HUANG Xinyi. Preparation of CsPbBr3Cs4PbBr6 Composite NCs by Ligand Assisted Mechanochemistry Method and Its Luminescence Intensity and Stability[J]. Journal of Synthetic Crystals, 2022, 51(12): 2104

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 30, 2022

    Accepted: --

    Published Online: Feb. 18, 2023

    The Author Email: DONG Qizheng (dongqzh@163.com)

    DOI:

    CSTR:32186.14.

    Topics