Chinese Journal of Lasers, Volume. 46, Issue 7, 0704011(2019)
Object Detection Based on Improved Grassberger Entropy Random Forest Classifier
[3] Mejias L. McNamara S, Lai J, et al. Vision-based detection and tracking of aerial targets for UAV collision avoidance. [C]∥2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan, China. New York: IEEE, 87-92(2010).
[4] Sapkota K R, Roelofsen S, Rozantsev A et al. Vision-based Unmanned Aerial Vehicle detection and tracking for sense and avoid systems. [C]∥2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 9-14, 2016, Daejeon, South Korea. New York: IEEE, 1556-1561(2016).
[7] Girshick R. Fast R-CNN. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1440-1448(2015).
[8] Rozantsev A, Lepetit V, Fua P. Flying objects detection from a single moving camera. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 4128-4136(2015).
[10] Malisiewicz T, Gupta A, Efros A A. Ensemble of exemplar-SVMs for object detection and beyond. [C]∥2011 International Conference on Computer Vision (ICCV), November 6-13, 2011, Barcelona, Spain. New York: IEEE, 89-96(2011).
[12] Kontschieder P, Fiterau M, Criminisi A et al. Deep neural decision forests. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1467-1475(2015).
[14] Roy A, Todorovic S. Monocular depth estimation using neural regression forest. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 5506-5514(2016).
[15] Schulter S, Leistner C, Wohlhart P et al. Accurate object detection with joint classification-regression random forests. [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 923-930(2014).
[16] Yao B P, Khosla A, Li F F. Combining randomization and discrimination for fine-grained image categorization. [C]∥2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 20-25 2011, Colorado Springs, CO, USA. New York: IEEE, 1577-1584(2011).
[17] Zhang J G, Singh V P[M]. Information entropy—theory and application, 1-69(2012).
[20] Sun H N, Hu X G. An improved learning algorithm of decision tree based on entropy uncertainty deviation. [C]∥2012 IEEE 14th International Conference on Communication Technology, November 9-11, 2012, Chengdu, China. New York: IEEE, 799-803(2012).
[24] Gradshteyn I S, Ryshik I M[M]. Tables of integrals, series, and products, 13(1965).
[27] Tran A, Manzanera A. Fast growing hough forest as a stable model for object detection. [C]∥2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), December 12-15, 2016, Oulu, Finland. New York: IEEE, 7820960(2016).
[28] Garcia-Hernando G, Kim T K. Transition forests: learning discriminative temporal transitions for action recognition and detection. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 407-415(2017).
Get Citation
Copy Citation Text
Juanjuan Ma, Quan Pan, Yan Liang, Jinwen Hu, Chunhui Zhao, Yaning Guo. Object Detection Based on Improved Grassberger Entropy Random Forest Classifier[J]. Chinese Journal of Lasers, 2019, 46(7): 0704011
Category: measurement and metrology
Received: Sep. 29, 2018
Accepted: Mar. 7, 2019
Published Online: Jul. 11, 2019
The Author Email: Zhao Chunhui (zhaochunhui@nwpu.edu.cn)