Laser & Optoelectronics Progress, Volume. 55, Issue 9, 92501(2018)
Polarization Modulation of Terahertz Wave by Graphene Metamaterial with Grating Structure
[1] [1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105.
[2] [2] Williams G P. Filling the THz gap-high power sources and applications[J]. Reports on Progress in Physics, 2006, 69(2): 301-326.
[3] [3] Liu L M, Zhao G Z, Zhang G H, et al. Polarization characteristics of one-dimensional metallic wire-grating polarizer in terahertz frequency range[J]. Chinese Journal of Lasers, 2012, 39(3): 0311001.
[4] [4] Mao H Y, Xu H M, Xia L P, et al. A large area and low loss thin-film terahertz polarizer[J]. Acta Photonica Sinica, 2015, 44(9): 0923004.
[5] [5] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[6] [6] Novoselov KS, Fal′ko VI, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.
[7] [7] Docherty C J, Johnston M B. Terahertz properties of graphene[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(8): 797-815.
[8] [8] Zhou Y X. Study on tunable conductance characteristics and application of graphene in terahertz band[D]. Xi′an: Northwest University, 2014: 20-23.
[9] [9] Maeng I, Lim S, Chae S J, et al. Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy[J]. Nano Letters, 2012, 12(2): 551-555.
[11] [11] Zhou Y X, Xu X L, Hu F R, et al. Graphene as broadband terahertz antireflection coating[J]. Applied Physics Letters, 2014, 104(5): 051106.
[12] [12] Weis P, Garcia-Pomar J L, Hh M, et al. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6(10): 9118-9124.
[13] [13] Zhou Y X, Xu X L, Fan H M, et al. Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene[J]. Physical Chemistry Chemical Physics, 2013, 15(14): 5084-5090.
[14] [14] Sensale-Rodriguez B, Yan R S, Kelly M M, et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 2012, 3: 780.
[15] [15] Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4): 227-238.
[16] [16] Geng L, Xie Y N, Yuan Y. Graphene-based antenna with reconfigurable radiation pattern in terahertz[J]. Laser & Optoelectronics Progress, 2017, 54(3): 031602.
[17] [17] Gao H, Yan F P, Tan S Y, et al. Design of ultra-thin broadband terahertz metamaterial absorber based on patterned graphene[J]. Chinese Journal of Lasers, 2017, 44(7): 0703024.
[18] [18] Ju L, Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10): 630-634.
[19] [19] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 8(2): 1086-1101.
[20] [20] Yan H G, Li X S, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5): 330-334.
[21] [21] Horng J, Chen C F, Geng B S, et al. Drude conductivity of Dirac fermions in graphene[J]. Physical Review B, 2011, 83(16): 165113.
[22] [22] Yao Z H, Huang Y Y, Wang Q, et al. Tunable surface-plasmon-polariton-like modes based on graphene metamaterials in terahertz region[J]. Computational Materials Science, 2016, 117: 544-548.
[23] [23] Hanson G W. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.
Get Citation
Copy Citation Text
Cao Jianguo, Zhou Yixuan. Polarization Modulation of Terahertz Wave by Graphene Metamaterial with Grating Structure[J]. Laser & Optoelectronics Progress, 2018, 55(9): 92501
Category: OPTOELECTRONICS
Received: Feb. 27, 2018
Accepted: --
Published Online: Sep. 8, 2018
The Author Email: