Acta Laser Biology Sinica, Volume. 34, Issue 2, 113(2025)

Research Progress on the Molecular Mechanisms by which Gut Microbiota Metabolites Affect the Development of Type 2 Diabetes Mellitus

YU Walin, ZHAO Danqing, CAO Wen, and WANG Kun*
Author Affiliations
  • Department of Endocrinology, the Affiliated Jiangning Hospital, Nanjing Medical University, Nanjing 211100, China
  • show less
    References(86)

    [2] [2] CHEN B, SUN L, ZENG G,et al.Gut bacteria alleviate smoking-related NASH by degrading gut nicotine[J]. Nature, 2022, 610(7932): 562-568.

    [3] [3] LAI H C, LIN T L, CHEN T W,et al. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatoryParabacteroides goldsteiniilipopolysaccharide[J]. Gut, 2022, 71(2): 309-321.

    [4] [4] WANG S, REN H, ZHONG H,et al. Combined berberine and probiotic treatment as an effective regimen for improving postprandial hyperlipidemia in type 2 diabetes patients: a double blinded placebo controlled randomized study[J]. Gut Microbes, 2022, 14(1): e2003176.

    [5] [5] DU L, LIQ, YI H,et al. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus[J]. Biomedicine & Pharmacotherapy, 2022, 149: 112839.

    [6] [6] TANASE D M, GOSAV E M, NECULAE E,et al. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM)[J]. Nutrients, 2020, 12(12): 3719.

    [7] [7] FANG Q, LIU N, ZHENG B,et al. Roles of gut microbial metabolites in diabetic kidney disease[J]. Frontiers in Endocrinology, 2021, 12: 636175.

    [8] [8] LEUSTEAN A M, CIOCOIU M, SAVA A,et al. Implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications[J]. Journal of Diabetes Research, 2018, 2018: 5205126.

    [9] [9] ZHUANG R, GE X, HAN L,et al. Gut microbe-generated metabolite trimethylamine N-oxide and the risk of diabetes: a systematic review and dose-response meta-analysis[J]. Obesity Reviews, 2019, 20(6): 883-894.

    [10] [10] HASHIMOTO Y, HAMAGUCHI M, FUKUI M. Microbe-associated metabolites as targets for incident type 2 diabetes[J]. Journal of Diabetes Investigation, 2021, 12(4): 476-478.

    [11] [11] KUMAR M, PAL N, SHARMA P,et al. Omega-3 fatty acids and their interaction with the gut microbiome in the prevention and amelioration of Type-2 diabetes[J]. Nutrients, 2022, 14(9): 1723.

    [12] [12] QI Q, LI J, YU B,et al. Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies[J]. Gut, 2022, 71(6): 1095-1105.

    [13] [13] TENG K, HUANG F, LIU Y,et al. Food and gut originated bacteriocins involved in gut microbe-host interactions[J]. Critical Reviews in Microbiology, 2023, 49(4): 515-527.

    [14] [14] SCHROEDER B O, BCKHED F. Signals from the gut microbiota to distant organs in physiology and disease[J]. Nature Medicine, 2016, 22(10): 1079-1089.

    [15] [15] TILG H, MOSCHEN A R. Microbiota and diabetes: an evolving relationship[J]. Gut, 2014, 63(9): 1513-1521.

    [16] [16] WEN L, DUFFY A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes[J]. The Journal of Nutrition, 2017, 147(7): 1468S-1475S.

    [17] [17] WANG T Y, ZHANG X Q, CHEN A L,et al. A comparative study of microbial community and functions of type 2 diabetes mellitus patients with obesity and healthy people[J]. Applied Microbiology and Biotechnology, 2020, 104: 7143-7153.

    [18] [18] GURUNG M, LI Z, YOU H,et al. Role of gut microbiota in type 2 diabetes pathophysiology[J]. EBioMedicine, 2020, 51: 102590.

    [19] [19] HAMPE C S, ROTH C L. Probiotic strains and mechanistic insights for the treatment of type 2 diabetes[J]. Endocrine, 2017, 58: 207-227.

    [20] [20] QIN J, LI Y, CAI Z,et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418): 55-60.

    [21] [21] LEMAITRE R N, JENSEN P N, WANG Z,et al. Association of trimethylamine N-oxide and related metabolites in plasma and incident type 2 diabetes: the cardiovascular health study[J]. JAMA Network Open, 2021, 4(8): e2122844.

    [22] [22] WU X, LIN D, LI Q,et al. Investigating causal associations among gut microbiota, gut microbiota-derived metabolites, and gestational diabetes mellitus: a bidirectional Mendelian randomization study[J]. Aging (Albany NY), 2023, 15(16): 8345-8366.

    [23] [23] TAN J K, MACIA L, MACKAY C R. Dietary fiber and SCFAs in the regulation of mucosal immunity[J]. Journal of Allergy and Clinical Immunology, 2023, 151(2): 361-370.

    [24] [24] HASHIMOTO Y, HAMAGUCHI M, FUKUI M. Microbe-associated metabolites as targets for incident type 2 diabetes[J]. Journal of Diabetes Investigation, 2021, 12(4): 476-478.

    [25] [25] PAN Y, BU T, DENG X,et al. Gut microbiota and type 2 diabetes mellitus: a focus on the gut-brain axis[J]. Endocrine, 2024, 84(1): 1-15.

    [26] [26] SANNA S, VAN ZUYDAM N R, MAHAJAN A,et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases[J]. Nature Genetics, 2019, 51(4): 600-605.

    [27] [27] DUNCAN S H, HOLTROP G, LOBLEY G E,et al. Contribution of acetate to butyrate formation by human faecal bacteria[J]. British Journal of Nutrition, 2004, 91(6): 915-923.

    [28] [28] VITAL M, KARCH A, PIEPER D H. Colonic butyrate-producing communities in humans: an overview using omics data[J]. Msystems, 2017, 2(6): e00130-17.

    [29] [29] SMITH C, VAN HAUTE M J, ROSE D J. Processing has differential effects on microbiota-accessible carbohydrates in whole grains duringin vitrofermentation[J]. Applied and Environmental Microbiology, 2020, 86(21): e01705-01720.

    [30] [30] DE VOS W M, TILG H, VAN HUL M,et al. Gut microbiome and health: mechanistic insights[J]. Gut, 2022, 71(5): 1020-1032.

    [31] [31] REY F E, FAITH J J, BAIN J,et al. Dissecting thein vivometabolic potential of two human gut acetogens[J]. Journal of Biological Chemistry, 2010, 285(29): 22082-22090.

    [32] [32] KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P,et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345.

    [33] [33] REICHARDT N, DUNCAN S H, YOUNG P,et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota[J]. The ISME Journal, 2014, 8(6): 1323-1335.

    [34] [34] ZHANG Y, PENG Y, ZHAO L,et al. Regulating the gut microbiota and SCFAs in the faeces of T2DM rats should be one of antidiabetic mechanisms of mogrosides in the fruits ofSiraitia grosvenorii[J]. Journal of Ethnopharmacology, 2021, 274: 114033.

    [35] [35] LEE Y S, LEE D, PARK G S,et al. Lactobacillus plantarum HAC01 ameliorates type 2 diabetes in high-fat diet and streptozotocin-induced diabetic mice in association with modulating the gut microbiota[J]. Food & Function, 2021, 12(14): 6363-6373.

    [36] [36] MCNABNEY S M, HENAGAN T M. Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance[J]. Nutrients, 2017, 9(12): 1348.

    [37] [37] KIM C H. Microbiota or short-chain fatty acids: which regulates diabetes?[J]. Cellular & Molecular Immunology, 2018, 15(2): 88-91.

    [38] [38] CHEN X, WU J, FU X,et al. Fructus mori polysaccharide alleviates diabetic symptoms by regulating intestinal microbiota and intestinal barrier against TLR4/NF-kappaB pathway[J]. International Journal of Biological Macromolecules, 2023, 249: 126038.

    [39] [39] SALAMONE D, RIVELLESE A A, VETRANI C. The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role of dietary fibre[J]. Acta Diabetologica, 2021, 58(9): 1131-1138.

    [40] [40] ZENG Y, WU Y, ZHANG Q,et al. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases[J]. mBio, 2024, 15(1): e0203223.

    [41] [41] KHUMALO S, DUMA Z, BEKKER L,et al. Type 2 diabetes mellitus in low- and middle-income countries: the significant impact of short-chain fatty acids and their quantification[J]. Diagnostics (Basel), 2024, 14(15): 1636.

    [42] [42] DE VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D,et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1): 84-96.

    [43] [43] WU J, YANG K, FAN H,et al. Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus[J]. Front Endocrinol (Lausanne), 2023, 14: 1114424.

    [44] [44] UFNAL M, PHAM K. The gut-blood barrier permeability —a new marker in cardiovascular and metabolic diseases?[J]. Medical hypotheses, 2017, 98: 35-37.

    [45] [45] ZHAO X, ODURO P K, TONG W,et al. Therapeutic potential of natural products against atherosclerosis: targeting on gut microbiota[J]. Pharmacological Research, 2021, 163: 105362.

    [46] [46] KRUEGER E S, BEALES J L, RUSSON K B,et al. Gut metabolite trimethylamine N-oxide protects INS-1 -cell and rat islet function under diabetic glucolipotoxic conditions[J]. Biomolecules, 2021, 11(12): 1892.

    [47] [47] LOO R L, CHAN Q, NICHOLSON J K,et al. Balancing the equation: a natural history of trimethylamine and trimethylamine-N-oxide[J]. Journal of Proteome Research, 2022, 21(3): 560-589.

    [48] [48] SAWICKI C M, PACHECO L S, RIVAS-TUMANYAN S,et al. Association of gut microbiota-related metabolites and type 2 diabetes in two puerto rican cohorts[J]. Nutrients, 2024, 16(7): 959.

    [49] [49] WINTHER S A, LLGAARD J C, HANSEN T W,et al. Plasma trimethylamine N-oxide and its metabolic precursors and risk of mortality, cardiovascular and renal disease in individuals with type 2-diabetes and albuminuria[J]. PLoS One, 2021, 16(3): e0244402.

    [50] [50] CROYAL M, SAULNIER P J, AGUESSE A,et al. Plasma trimethylamine N-oxide and risk of cardiovascular events in patients with type 2 diabetes[J]. The Journal of Clinical Endocrinology & Metabolism, 2020, 105(7): 2371-2380.

    [51] [51] NOGAL A, VALDES A M, MENNI C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health[J]. Gut Microbes, 2021, 13(1): 1897212.

    [52] [52] ZHU W, ROMANO K A, LI L,et al. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway[J]. Cell host & microbe, 2021, 29(7): 1199-1208.e5.

    [53] [53] VELASQUEZ M T, RAMEZANI A, MANAL A,et al. Trimethylamine N-oxide: the good, the bad and the unknown[J]. Toxins, 2016, 8(11): 326.

    [54] [54] JANEIRO M H, RAMREZ M J, MILAGRO F I,et al. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target[J]. Nutrients, 2018, 10(10): 1398.

    [55] [55] GAO X, LIU X, XU J,et al. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet[J]. Journal of Bioscience and Bioengineering, 2014, 118(4): 476-481.

    [56] [56] CHEN S, HENDERSON A, PETRIELLO M C,et al. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction[J]. Cell Metabolism, 2019, 30(6): 1141-1151.

    [57] [57] WANG Y, LYU B, LIU N,et al. The mechanism of bile acid metabolism regulating lipid metabolism and inflammatory response in T2DM through the gut-liver axis[J]. Heliyon, 2024, 10(16): e35421.

    [58] [58] GONZLEZ-REGUEIRO J A, MORENO-CASTAEDA L, URIBE M,et al. The role of bile acids in glucose metabolism and their relation with diabetes[J]. Annals of Hepatology, 2018, 16(1): 15-20.

    [59] [59] DING L, YANG Q, ZHANG E,et al. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice[J]. Acta Pharmaceutica Sinica B, 2021, 11(6): 1541-1554.

    [60] [60] DI CIAULA A, GARRUTI G, BACCETTO R L,et al. Bile acid physiology[J]. Annals of Hepatology, 2018, 16(1): 4-14.

    [61] [61] MULLISH B H, MCDONALD J A, PECHLIVANIS A,et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection[J]. Gut, 2019, 68(10): 1791-1800.

    [62] [62] SONG Z W, CAI Y Y, LAO X Z,et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome[J]. Microbiome, 2019, 7: 1-16.

    [63] [63] ZHANG F, YUAN W Z, WEI Y H,et al. The alterations of bile acids in rats with high-fat diet/streptozotocin-induced type 2 diabetes and their negative effects on glucose metabolism[J]. Life Sciences, 2019, 229: 80-92.

    [64] [64] TANASE D M, GOSAV E M, NECULAE E,et al. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM)[J]. Nutrients, 2020, 12(12): 3719.

    [65] [65] CUNNINGHAM A L, STEPHENS J W, HARRIS D A. Gut microbiota influence in type 2 diabetes mellitus (T2DM)[J]. Gut Pathogens, 2021, 13(1): 50.

    [66] [66] TAWULIE D, JIN L, SHANG X,et al. Jiang-Tang-San-Huang pill alleviates type 2 diabetes mellitus through modulating the gut microbiota and bile acids metabolism[J]. Phytomedicine, 2023, 113: 154733.

    [67] [67] ZHU X, CHEN Z, ZHANG B,et al. Bile acid injection regulated blood glucose in T2DM rats via the TGR5/GLP-1 rather than FXR/FGF15 pathway[J]. Alternative Therapies in Health and Medicine, 2024, 30(12): 480-485.

    [68] [68] JENNIS M, CAVANAUGH C R, LEO G C,et al. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeabilityin vitroandin vivo[J]. Neurogastroenterology & Motility, 2018, 30(2): e13178.

    [69] [69] GHORBANI Y, SCHWENGER K J P, ALLARD J P. Manipulation of intestinal microbiome as potential treatment for insulin resistance and type 2 diabetes[J]. European Journal of Nutrition, 2021, 60(5): 2361-2379.

    [70] [70] ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease[J]. Nature Communications, 2018, 9(1): 3294.

    [71] [71] SEHGAL R, DE MELLO V D, MNNIST V,et al. Indolepro-pionic acid, a gut bacteria-produced tryptophan metabolite and the risk of type 2 diabetes and non-alcoholic fatty liver disease[J]. Nutrients, 2022, 14(21): 4695.

    [72] [72] GESPER M, NONNAST A B, KUMOWSKI N,et al. Gut-derived metabolite indole-3-propionic acid modulates mitochondrial function in cardiomyocytes and alters cardiac function[J]. Frontiers in Medicine, 2021, 8: 648259.

    [73] [73] MARTN-PELEZ S, FITO M, CASTANER O. Mediterranean diet effects on type 2 diabetes prevention, disease progression, and related mechanisms. A review[J]. Nutrients, 2020, 12(8): 2236.

    [74] [74] LI B, LI M, LUO Y,et al. Engineered 5-HT producing gut probiotic improves gastrointestinal motility and behavior disorder[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 1013952.

    [75] [75] PAPPOLLA M A, PERRY G, FANG X,et al. Indoles as essential mediators in the gut-brain axis. Their role in Alzheimer's disease[J]. Neurobiology of Disease, 2021, 156: 105403.

    [76] [76] JEDDI S, GHEIBI S, CARLSTRM M,et al. Long-term co-administration of sodium nitrite and sodium hydrosulfide inhibits hepatic gluconeogenesis in male type 2 diabetic rats: role of PI3K-Akt-eNOS pathway[J]. Life Sciences, 2021, 265: 118770.

    [77] [77] PICHETTE J, GAGNON J. Implications of hydrogen sulfide in glucose regulation: how H2S can alter glucose homeostasis through metabolic hormones[J]. Oxidative Medicine and Cellular Longevity, 2016, 2016: 3285074.

    [78] [78] ZHANG L, YANG G, UNTEREINER A,et al. Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes[J]. Endocrinology, 2013, 154(1): 114-126.

    [79] [79] SOSKIC S S, DOBUTOVIC B D, SUDAR E M,et al. Regulation of inducible nitric oxide synthase (iNOS) and its potential role in insulin resistance, diabetes and heart failure[J]. The Open Cardiovascular Medicine Journal, 2011, 5: 153-163.

    [80] [80] GUO C, LIANG F, MASOOD W S,et al. Hydrogen sulfide protected gastric epithelial cell from ischemia/reperfusion injury by Keap1 s-sulfhydration, MAPK dependent anti-apoptosis and NF-B dependent anti-inflammation pathway[J]. European Journal of Pharmacology, 2014, 725: 70-78.

    [81] [81] SINGH S B, LIN H C. Hydrogen sulfide in physiology and diseases of the digestive tract[J]. Microorganisms, 2015, 3(4): 866-889.

    [82] [82] PITOCCO D, ZACCARDI F, DI STASIO E,et al. Oxidative stress, nitric oxide, and diabetes[J]. The Review of Diabetic Studies, 2010, 7(1): 15.

    [83] [83] ZHAI L, WU J, LAM Y Y,et al. Gut-microbial metabolites, probiotics and their roles in type 2 diabetes[J]. International Journal of Molecular Sciences, 2021, 22(23): 12846.

    [84] [84] KACZMARCZYK M M, MILLER M J, FREUND G G. The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer[J]. Metabolism, 2012, 61(8): 1058-1066.

    [85] [85] BARBER T M, KABISCH S, PFEIFFER A F,et al. The health benefits of dietary fibre[J]. Nutrients, 2020, 12(10): 3209.

    [86] [86] KOBYLIAK N, FALALYEYEVA T, MYKHALCHYSHYN G,et al. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: randomized clinical trial[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2018, 12(5): 617-624.

    [87] [87] TONUCCI L B, DOS SANTOS K M O, DE OLIVEIRA L L,et al. Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study[J]. Clinical Nutrition, 2017, 36(1): 85-92.

    Tools

    Get Citation

    Copy Citation Text

    YU Walin, ZHAO Danqing, CAO Wen, WANG Kun. Research Progress on the Molecular Mechanisms by which Gut Microbiota Metabolites Affect the Development of Type 2 Diabetes Mellitus[J]. Acta Laser Biology Sinica, 2025, 34(2): 113

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 13, 2024

    Accepted: Jul. 24, 2025

    Published Online: Jul. 24, 2025

    The Author Email: WANG Kun (doc_kunwang@163.com)

    DOI:10.3969/j.issn.1007-7146.2025.02.003

    Topics