Journal of the Chinese Ceramic Society, Volume. 52, Issue 2, 442(2024)
Origin of Pseudocapacitance and Achieving Bulk Pseudocapacitance
[1] [1] ZOU C N, ZHAO Q, ZHANG G S, et al. Energy revolution: from a fossil energy era to a new energy era[J]. Nat Gas Ind B, 2016, 3(1): 1-11.
[2] [2] POMERANTSEVA E, BONACCORSO F, FENG X L, et al. Energy storage: The future enabled by nanomaterials[J]. Science, 2019, 366(6468): eaan8285.
[3] [3] CHEN M Z, ZHANG Y Y, XING G C, et al. Electrochemical energy storage devices working in extreme conditions[J]. Energy Environ Sci, 2021, 14(6): 3323-3351.
[4] [4] SIMON P, GOGOTSI Y. Perspectives for electrochemical capacitors and related devices[J]. Nat Mater, 2020, 19(11): 1151-1163.
[5] [5] SMITH P F, TAKEUCHI K J, MARSCHILOK A C, et al. Holy grails in chemistry: Investigating and understanding fast electron/cation coupled transport within inorganic ionic matrices[J]. Acc Chem Res, 2017, 50(3): 544-548.
[6] [6] CHEN X L, PAUL R, DAI L M. Carbon-based supercapacitors for efficient energy storage[J]. Natl Sci Rev, 2017, 4(3): 453-489.
[7] [7] CHOI C, ASHBY D S, BUTTS D M, et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nat Rev Mater, 2020, 5(1): 5-19.
[8] [8] GREY C P, HALL D S. Prospects for lithium-ion batteries and beyond-a 2030 vision[J]. Nat Commun, 2020, 11(1): 6279.
[9] [9] AU H, CRESPO-RIBADENEYRA M, TITIRICI M M. Beyond Li-ion batteries: Performance, materials diversification, and sustainability[J]. One Earth, 2022, 5(3): 207-211.
[10] [10] CHATTERJEE D P, NANDI A K. A review on the recent advances in hybrid supercapacitors[J]. J Mater Chem A, 2021, 9(29): 15880-15918.
[11] [11] FLEISCHMANN S, MITCHELL J B, WANG R C, et al. Pseudocapacitance: From fundamental understanding to high power energy storage materials[J]. Chem Rev, 2020, 120(14): 6738-6782.
[12] [12] WANG Y G, SONG Y F, XIA Y Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chem Soc Rev, 2016, 45(21): 5925-5950.
[13] [13] WANG J, DONG S Y, DING B, et al. Pseudocapacitive materials for electrochemical capacitors: From rational synthesis to capacitance optimization[J]. Natl Sci Rev, 2017, 4(1): 71-90.
[14] [14] HE T Q, KANG X Y, WANG F J, et al. Capacitive contribution matters in facilitating high power battery materials toward fast-charging alkali metal ion batteries[J]. Mater Sci Eng R Rep, 2023, 154: 100737.
[15] [15] LONG Z Y, RUAN J F, LI S Y, et al. Could capacitive behavior be triggered in inorganic electrolyte-based all-solid-state batteries?[J]. Adv Funct Mater, 2022, 32(40): 2205667.
[16] [16] LU X L, ZHANG X F, ZHENG Y P, et al. High-performance K-ion half/full batteries with superb rate capability and cycle stability[J]. Proc Natl Acad Sci U S A, 2022, 119(23): e2122252119.
[17] [17] JIANG Y Q, LIU J P. Definitions of pseudocapacitive materials: A brief review[J]. Energy Environ Mater, 2019, 2(1): 30-37.
[18] [18] COSTENTIN C, PORTER T R, SAVéANT J M. How do pseudocapacitors store energy? Theoretical analysis and experimental illustration[J]. ACS Appl Mater Interfaces, 2017, 9(10): 8649-8658.
[19] [19] CONWAY B E, GILEADI E. Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage[J]. Trans Faraday Soc, 1962, 58: 2493-2509.
[20] [20] KIM I H, KIM K B. Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications[J]. J Electrochem Soc, 2006, 153(2): A383.
[21] [21] SERGIO T, GIOVANNI B. Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour[J]. J Electroanal Chem Interfacial Electrochem, 1971, 29(2): A1-A5.
[22] [22] GALIZZIOLI D, TANTARDINI F, TRASATTI S. Ruthenium dioxide: A new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions[J]. J Appl Electrochem, 1975, 5(3): 203-214.
[23] [23] GALIZZIOLI D, TANTARDINI F, TRASATTI S. Ruthenium dioxide: A new electrode material. I. Behaviour in acid solutions of inert electrolytes[J].J Appl Electrochem, 1974, 4(1): 57-67.
[24] [24] ZHENG J P, CYGAN P J, JOW T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. J Electrochem Soc, 1995, 142(8): 2699-2703.
[25] [25] XU W W, ZHAO K N, LIAO X B, et al. Proton storage in metallic H1.75MoO3 nanobelts through the grotthuss mechanism[J]. J Am Chem Soc, 2022, 144(38): 17407-17415.
[26] [26] GENG C, SUN T L, WANG Z C, et al. Surface-induced desolvation of hydronium ion enables anatase TiO2 as an efficient anode for proton batteries[J]. Nano Lett, 2021, 21(16): 7021-7029.
[27] [27] LEE H Y, GOODENOUGH J B. Supercapacitor behavior with KCl electrolyte[J]. J Solid State Chem, 1999, 144(1): 220-223.
[28] [28] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nat Mater, 2008, 7(11): 845-854.
[29] [29] BOYD S, GANESHAN K, TSAI W Y, et al. Effects of interlayer confinement and hydration on capacitive charge storage in birnessite[J]. Nat Mater, 2021, 20(12): 1689-1694.
[30] [30] FLEISCHMANN S, ZHANG Y, WANG X P, et al. Continuous transition from double-layer to Faradaic charge storage in confined electrolytes[J]. Nat Energy, 2022, 7(3): 222-228.
[31] [31] LUKATSKAYA M R, KOTA S, LIN Z F, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nat Energy, 2017, 2(8): 1-6.
[32] [32] DENG T, ZHANG W, ARCELUS O, et al. Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors[J]. Nat Commun, 2017, 8(1): 1-9.
[33] [33] ZUKALOVá M, KALBá? M, KAVAN L, et al. Pseudocapacitive lithium storage in TiO2(B)[J]. Chem Mater, 2005, 17(5): 1248-1255.
[34] [34] AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat Mater, 2013, 12(6): 518-522.
[35] [35] AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environ Sci, 2014, 7(5): 1597-1614.
[36] [36] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372(6547): eabf1581.
[37] [37] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81.
[38] [38] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505.
[39] [39] BROUSSE T, BéLANGER D, LONG J W. To be or not to be pseudocapacitive?[J]. J Electrochem Soc, 2015, 162(5): A5185-A5189.
[40] [40] WANG X Y, WAN F, ZHANG L L, et al. Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors[J]. Adv Funct Mater, 2018, 28(18): 1707247.
[41] [41] ZUO W H, LI R Z, ZHOU C, et al. Battery-supercapacitor hybrid devices: recent progress and future prospects[J]. Adv Sci, 2017, 4(7): 1600539.
[42] [42] CHERUSSERI J, PANDEY D, THOMAS J. Symmetric, asymmetric, and battery-type supercapacitors using two-dimensional nanomaterials and composites[J]. Batter Supercaps, 2020, 3(9): 860-875.
[43] [43] ZHANG D, GUO X M, TONG X Z, et al. High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni-Co layered double hydroxide[J]. J Alloys Compd, 2020, 837: 155529.
[44] [44] KOLAHALAM L A, KASI VISWANATH I V, DIWAKAR B S, et al. Review on nanomaterials: Synthesis and applications[J]. Mater Today Proc, 2019, 18: 2182-2190.
[45] [45] BAIG N, KAMMAKAKAM I, FALATH W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges[J]. Mater Adv, 2021, 2(6): 1821-1871.
[47] [47] ARICò A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat Mater, 2005, 4(5): 366-377.
[48] [48] OKUBO M, HOSONO E, KIM J, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode[J]. ChemInform, 2007, 38(36): 7444-7452.
[49] [49] DONG T W, YI W C, DENG T, et al. Diffusionless-like transformation unlocks pseudocapacitance with bulk utilization: reinventing Fe2O3 in alkaline electrolyte[J]. Energy Environ Mater, 2023, 6(1): e12262.
[50] [50] LI J Y, ZHANG W, GE X, et al. Etching-courtesy NH4+ pre- intercalation enables highly-efficient Li+ storage of MXenes via the renaissance of interlayer redox[J]. J Energy Chem, 2022, 72: 26-32.
[51] [51] PAN Z Y, QIN T T, ZHANG W, et al. Non-layer-transformed Mn3O4 cathode unlocks optimal aqueous magnesium-ion storage via synergizing amorphous ion channels and grain refinement[J]. J Energy Chem, 2022, 68: 42-48.
[52] [52] HUANG C X, WANG D, ZHANG W, et al. Substitution-triggered broken symmetry of cobalt tungstate boosts redox kinetics in pseudocapacitive storage[J]. Cell Rep Phys Sci, 2022, 3(11): 101115.
[53] [53] ZHAO Z Z, ZHANG W, LIU M, et al. Switching optimally balanced Fe-N interaction enables extremely stable energy storage[J]. Energy Environ Mater, 2023, 6(2): e12342.
[54] [54] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682-686.
[55] [55] GAO Y R, NOLAN A M, DU P, et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors[J]. Chem Rev, 2020, 120(13): 5954-6008.
[56] [56] HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nat Commun, 2017, 8(1): 1-7.
[57] [57] YANG H, QIN T T, ZHOU X Y, et al. Boosting the kinetics of PF6? into graphitic layers for the optimal cathode of dual-ion batteries: the rehearsal of pre-intercalating Li+[J]. J Energy Chem, 2022, 71: 392-399.
[58] [58] LIANG K, MATSUMOTO R A, ZHAO W, et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid[J]. Adv Funct Mater, 2021, 31(33): 2104007.
[59] [59] GUO T Q, HU P F, LI L D, et al. Amorphous materials emerging as prospective electrodes for electrochemical energy storage and conversion[J]. Chemistry, 2023, 9(5): 1080-1093.
[60] [60] ZHANG J N, LI Q H, OUYANG C Y, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6?V[J]. Nat Energy, 2019, 4(7): 594-603.
[61] [61] KIM H S, COOK J B, LIN H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3?x[J]. Nat Mater, 2017, 16(4): 454-460.
[62] [62] ZHENG J X, GARCIA-MENDEZ R, ARCHER L A. Engineering multiscale coupled electron/ion transport in battery electrodes[J]. ACS Nano, 2021, 15(12): 19014-19025.
[63] [63] SUN H H, KIM U H, PARK J H, et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries[J]. Nat Commun, 2021, 12(1): 1-11.
[64] [64] QIN T T, WANG D, ZHANG X Y, et al. Unlocking the optimal aqueous δ-Bi2O3 anode via unifying octahedrally liberated Bi-atoms and spilled nano-Bi exsolution[J]. Energy Storage Mater, 2021, 36: 376-386.
Get Citation
Copy Citation Text
DONG Taowen, ZHANG Wei, ZHENG Weitao. Origin of Pseudocapacitance and Achieving Bulk Pseudocapacitance[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 442
Special Issue:
Received: Jun. 29, 2023
Accepted: --
Published Online: Aug. 5, 2024
The Author Email: ZHANG Wei (weizhang@jlu.edu.cn)
CSTR:32186.14.