International Journal of Extreme Manufacturing, Volume. 4, Issue 4, 45102(2022)

Laser-assisted growth of hierarchically architectured 2D MoS2 crystals on metal substrate for potential energy applications

Parvin Fathi-Hafshejani1, Jafar Orangi2, Majid Beidaghi2, and Masoud Mahjouri-Samani1、*
Author Affiliations
  • 1Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, United States of America
  • 2Department of Mechanical and Material Engineering, Auburn University, Auburn, AL 36849, United States of America
  • show less

    [1] [1] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets Nat. Chem. 5 263-75

    [2] [2] Geim A K and Grigorieva I V 2013 Van der Waals heterostructures Nature 499 419-25

    [3] [3] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnol. 7 699-712

    [4] [4] Lee G H et al 2013 Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures ACS Nano 7 7931-6

    [5] [5] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides ACS Nano 8 1102-20

    [6] [6] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105 136805

    [7] [7] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Emerging photoluminescence in monolayer MoS2 Nano Lett. 10 1271-5

    [8] [8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS2 transistors Nat. Nanotechnol. 6 147-50

    [9] [9] Fang X P, Hua C X, Guo X W, Hu Y S, Wang Z X, Gao X P, Wu F, Wang J Z and Chen L Q 2012 Lithium storage in commercial MoS2 in different potential ranges Electrochim. Acta 81 155-60

    [10] [10] Bertolazzi S, Brivio J and Kis A 2011 Stretching and breaking of ultrathin MoS2 ACS Nano 5 9703-9

    [11] [11] Fathi-Hafshejani P, Azam N, Wang L, Kuroda M A, Hamilton M C, Hasim S and Mahjouri-Samani M 2021 Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 virus (SARS-CoV-2) ACS Nano 15 11461-9

    [12] [12] Lee C, Yan H G, Brus L E, Heinz T F, Hone J and Ryu S 2010 Anomalous lattice vibrations of single- and few-layer MoS2 ACS Nano 4 2695-700

    [13] [13] Gong Y J et al 2014 Vertical and in-plane heterostructures from WS2/MoS2 monolayers Nat. Mater. 13 1135-42

    [14] [14] Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K and Rao C N R 2010 MoS2 and WS2 analogues of graphene Angew. Chem., Int. Ed. 49 4059-62

    [15] [15] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 Single-layer MoS2 phototransistors ACS Nano 6 74-80

    [16] [16] Feng C Q, Ma J, Li H, Zeng R, Guo Z P and Liu H K 2009 Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications Mater. Res. Bull. 44 1811-5

    [17] [17] Carroll G M, Zhang H Y, Dunklin J R, Miller E M, Neale N R and van de Lagemaat J 2019 Unique interfacial thermodynamics of few-layer 2D MoS2 for (photo) electrochemical catalysis Energy Environ. Sci. 12 1648-56

    [18] [18] Naik S G and Rabinal M H K 2020 Molybdenum disulphide heterointerfaces as potential materials for solar cells, energy storage, and hydrogen evolution Energy Technol. 8 1901299

    [19] [19] Li H Y, Jia X F, Zhang Q and Wang X 2018 Metallic transition-metal dichalcogenide nanocatalysts for energy conversion Chem 4 1510-37

    [20] [20] Bissett M A, Worrall S D, Kinloch I A and Dryfe R A W 2016 Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors Electrochim. Acta 201 30-37

    [21] [21] Wang H, Feng H B and Li J H 2014 Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage Small 10 2165-81

    [22] [22] Truong Q D, Kempaiah Devaraju M, Nakayasu Y, Tamura N, Sasaki Y, Tomai T and Honma I 2017 Exfoliated MoS2 and MoSe2 nanosheets by a supercritical fluid process for a hybrid Mg-Li-ion battery ACS Omega 2 2360-7

    [23] [23] Stephenson T, Li Z, Olsen B and Mitlin D 2014 Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites Energy Environ. Sci. 7 209-31

    [24] [24] Wang G X, Bewlay S, Yao J, Liu H K and Dou S X 2004 Tungsten disulfide nanotubes for lithium storage Electrochem. Solid-State Lett. 7 A321-3

    [25] [25] Das S K, Mallavajula R, Jayaprakash N and Archer L A 2012 Self-assembled MoS2-carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance J. Mater. Chem. 22 12988-92

    [26] [26] Chang K, Chen W X, Ma L, Li H, Li H, Huang F H, Xu Z D, Zhang Q B and Lee J Y 2011 Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries J. Mater. Chem. 21 6251-7

    [27] [27] Chang K and Chen W X 2011 l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries ACS Nano 5 4720-8

    [28] [28] Zhang C F, Wu H B, Guo Z P and Lou X W 2012 Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties Electrochem. Commun. 20 7-10

    [29] [29] Silbernagel B G 1975 Lithium intercalation complexes of layered transition metal dichalcogenides: an NMR survey of physical properties Solid State Commun. 17 361-5

    [30] [30] Whittingham M S 1978 Chemistry of intercalation compounds: metal guests in chalcogenide hosts Prog. Solid State Chem. 12 41-99

    [31] [31] Friend R H and Yoffe A D 1987 Electronic properties of intercalation complexes of the transition metal dichalcogenides Adv. Phys. 36 1-94

    [32] [32] Park J, Kim J S, Park J W, Nam T H, Kim K W, Ahn J H, Wang G X and Ahn H J 2013 Discharge mechanism of MoS2 for sodium ion battery: electrochemical measurements and characterization Electrochim. Acta 92 427-32

    [33] [33] Wang L F, Xu Z, Wang W L and Bai X D 2014 Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets J. Am. Chem. Soc. 136 6693-7

    [34] [34] Wang X F, Shen X, Wang Z X, Yu R C and Chen L Q 2014 Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation ACS Nano 8 11394-400

    [35] [35] Santhosha A L, Nayak P K, Pollok K, Langenhorst F and Adelhelm P 2019 Exfoliated MoS2 as electrode for all-solid-state rechargeable lithium-ion batteries J. Phys. Chem. C 123 12126-34

    [36] [36] Winchester A, Ghosh S, Feng S M, Elias A L, Mallouk T, Terrones M and Talapatra S 2014 Electrochemical characterization of liquid phase exfoliated two-dimensional layers of molybdenum disulfide ACS Appl. Mater. Interfaces 6 2125-30

    [37] [37] Bang G S, Nam K W, Kim J Y, Shin J, Choi J W and Choi S Y 2014 Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets ACS Appl. Mater. Interfaces 6 7084-9

    [38] [38] Coleman J N et al 2011 Two-dimensional nanosheets produced by liquid exfoliation of layered materials Science 331 568-71

    [39] [39] Wang X L et al 2014 Chemical vapor deposition growth of crystalline monolayer MoSe2 ACS Nano 8 5125-31

    [40] [40] Lu X et al 2014 Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates Nano Lett. 14 2419-25

    [41] [41] Late D J, Liu B, Ramakrishna Matte H S S, Rao C N R and Dravid V P 2012 Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates Adv. Funct. Mater. 22 1894-905

    [42] [42] Kim Y, Bark H, Ryu G H, Lee Z and Lee C 2016 Wafer-scale monolayer MoS2 grown by chemical vapor deposition using a reaction of MoO3 and H2S J. Phys.: Condens. Matter 28 184002

    [43] [43] Wang L et al 2019 Electronic devices and circuits based on wafer-scale polycrystalline monolayer MoS2 by chemical vapor deposition Adv. Electron. Mater. 5 1900393

    [44] [44] Peng L L, Zhu Y, Chen D H, Ruoff R S and Yu G H 2016 Two-dimensional materials for beyond-lithium-ion batteries Adv. Energy Mater. 6 1600025

    [45] [45] Liu J H and Liu X W 2012 Two-dimensional nanoarchitectures for lithium storage Adv. Mater. 24 4097-111

    [46] [46] Yang E, Ji H and Jung Y 2015 Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes J. Phys. Chem. C 119 26374-80

    [47] [47] Schmidt P A, Schmitz P and Zaeh M F 2016 Laser beam welding of electrical contacts for the application in stationary energy storage devices J. Laser Appl. 28 022423

    [48] [48] Geohegan D B et al 2018 Laser synthesis, processing, and spectroscopy of atomically-thin two dimensional materials Advances in the Application of Lasers in Materials Science ed P M Ossi (Cham: Springer) pp 1-37

    [49] [49] Mahjouri-Samani M et al 2015 Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors Nat. Commun. 6 7749

    [50] [50] Ahmadi Z, Fathi-Hafshejani P, Kayali E, Beidaghi M and Mahjouri-Samani M 2021 Rapid laser nanomanufacturing and direct patterning of 2D materials on flexible substrates—2DFlex Nanotechnology 32 055302

    [51] [51] Fathi-Hafshejani P, Johnson H, Ahmadi Z, Roach M, Shamsaei N and Mahjouri-Samani M 2021 Laser-assisted selective and localized surface transformation of titanium to anatase, rutile, and mixed phase nanostructures J. Laser Appl. 33 012014

    [52] [52] Fathi-Hafshejani P, Johnson H, Ahmadi Z, Roach M, Shamsaei N and Mahjouri-Samani M 2020 Phase-selective and localized TiO2 coating on additive and wrought titanium by a direct laser surface modification approach ACS Omega 5 16744-51

    [53] [53] Ahmadi Z, Fathi-Hafshejani P and Mahjouri-Samani M 2021 Laser patterning and crystallization of 2D materials on rigid and flexible substrates Proc. SPIE 11675 116750C

    [54] [54] Liu H Z, Zhang G H, Zheng X, Chen F J and Duan H G 2020 Emerging miniaturized energy storage devices for microsystem applications: from design to integration Int. J. Extrem. Manuf. 2 042001

    [55] [55] Fathi-Hafshejani P, Soltani-Tehrani A, Shamsaei N and Mahjouri-Samani M 2022 Laser incidence angle influence on energy density variations, surface roughness, and porosity of additively manufactured parts Addit. Manuf. 50 102572

    [56] [56] Pfleging W 2018 A review of laser electrode processing for development and manufacturing of lithium-ion batteries Nanophotonics 7 549-73

    [57] [57] Habedank J B, Endres J, Schmitz P, Zaeh M F and Huber H P 2018 Femtosecond laser structuring of graphite anodes for improved lithium-ion batteries: ablation characteristics and process design J. Laser Appl. 30 032205

    [58] [58] Tsuda T et al 2018 Improvement of high-rate charging/discharging performance of a lithium ion battery composed of laminated LiFePO4 cathodes/ graphite anodes having porous electrode structures fabricated with a pico-second pulsed laser Electrochim. Acta 291 267-77

    [59] [59] Park J, Hyeon S, Jeong S and Kim H J 2019 Performance enhancement of Li-ion battery by laser structuring of thick electrode with low porosity J. Ind. Eng. Chem. 70 178-85

    [60] [60] Pfleging W 2021 Recent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing Int. J. Extrem. Manuf. 3 012002

    [61] [61] Tang X X, Liu W, Ye B Y and Tang Y 2013 Preparation of current collector with blind holes and enhanced cycle performance of silicon-based anode Trans. Nonferr. Met. Soc. China 23 1723-7

    [62] [62] Zheng Y, An Z, Smyrek P, Seifert H J, Kunze T, Lang V, Lasagni A F and Pfleging W 2016 Direct laser interference patterning and ultrafast laser-induced micro/nano structuring of current collectors for lithium-ion batteries Proc. SPIE 9736 97361B

    [63] [63] Notten P H L et al 2007 3D integrated all-solid-state rechargeable batteries Adv. Mater. 19 4564-7

    [64] [64] Ferrari S, Loveridge M, Beattie S D, Jahn M, Dashwood R J and Bhagat R 2015 Latest advances in the manufacturing of 3D rechargeable lithium microbatteries J. Power Sources 286 25-46

    [65] [65] Zhang H G, Yu X D and Braun P V 2011 Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes Nat. Nanotechnol. 6 277-81

    [66] [66] Proll J, Kim H, Piqué A, Seifert H J and Pfleging W 2014 Laser-printing and femtosecond-laser structuring of LiMn2O4 composite cathodes for Li-ion microbatteries J. Power Sources 255 116-24

    [67] [67] Kim J S, Pfleging W, Kohler R, Seifert H J, Kim T Y, Byun D, Jung H G, Choi W and Lee J K 2015 Three-dimensional silicon/carbon core-shell electrode as an anode material for lithium-ion batteries J. Power Sources 279 13-20

    [68] [68] Rau H, Kutty T R N and De Carvalho J R F G 1973 Thermodynamics of sulphur vapour J. Chem. Thermodyn. 5 833-44

    [69] [69] Park S J, Chung Y D, Lee W J, Cho D H, Wi J H, Han W S, Cho Y and Yoon J M 2015 Flexible solar cells with a Cu (In, Ga) Se2 absorber grown by using a Se thermal cracker on a polyimide substrate J. Korean Phys. Soc. 66 76-81

    [70] [70] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 From bulk to monolayer MoS2: evolution of Raman scattering Adv. Funct. Mater. 22 1385-90

    [71] [71] Carvalho B R, Wang Y X, Mignuzzi S, Roy D, Terrones M, Fantini C, Crespi V H, Malard L M and Pimenta M A 2017 Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy Nat. Commun. 8 14670

    [72] [72] Bozheyev F, Valiev D and Nemkayeva R 2017 Pulsed cathodoluminescence and Raman spectra of MoS2 nanocrystals at different excitation electron energy densities and laser wavelengths J. Lumin. 188 529-32

    [73] [73] Miki Y, Nakazato D, Ikuta H, Uchida T and Wakihara M 1995 Amorphous MoS2 as the cathode of lithium secondary batteries J. Power Sources 54 508-10

    [74] [74] Ding S J, Chen J S and Lou X W 2011 Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties Chem. Eur. J. 17 13142-5

    [75] [75] Wang P P, Sun H Y, Ji Y J, Li W H and Wang X 2014 Three-dimensional assembly of single-layered MoS2 Adv. Mater. 26 964-9

    [76] [76] Ding S J, Zhang D Y, Chen J S and Lou X W 2012 Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties Nanoscale 4 95-98

    [77] [77] Zhang C F, Wang Z Y, Guo Z P and Lou X W 2012 Synthesis of MoS2-C one-dimensional nanostructures with improved lithium storage properties ACS Appl. Mater. Interfaces 4 3765-8

    [78] [78] Pfleging W and Gotcu P 2019 Femtosecond laser processing of thick film cathodes and its impact on lithium-ion diffusion kinetics Appl. Sci. 9 3588


    Get Citation

    Copy Citation Text

    Parvin Fathi-Hafshejani, Jafar Orangi, Majid Beidaghi, Masoud Mahjouri-Samani. Laser-assisted growth of hierarchically architectured 2D MoS2 crystals on metal substrate for potential energy applications[J]. International Journal of Extreme Manufacturing, 2022, 4(4): 45102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 20, 2022

    Accepted: --

    Published Online: Mar. 4, 2023

    The Author Email: Mahjouri-Samani Masoud (