Chinese Optics Letters, Volume. 22, Issue 4, 041101(2024)
Non-blind super-resolution reconstruction for laser-induced damage dark-field imaging of optical elements
[6] Y. Nan, H. Ji. Deep learning for handling kernel/model uncertainty in image deconvolution. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(2020).
[8] Z. Wang, X. Cun, J. Bao et al. Uformer: a general U-shaped transformer for image restoration. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(2022).
[9] L. Chen, X. Chu, X. Zhang et al. Simple baselines for image restoration. Computer Vision–ECCV 2022(2022).
[10] S. Nah, T. H. Kim, K. M. Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 257(2017).
[11] S.-J. Cho, S. W. Ji, J. P. Hong et al. Rethinking coarse-to-fine approach in single image deblurring. Proceedings of the IEEE/CVF International Conference on Computer Vision(2021).
Get Citation
Copy Citation Text
Qian Wang, Fengdong Chen, Yueyue Han, Fa Zeng, Cheng Lu, Guodong Liu, "Non-blind super-resolution reconstruction for laser-induced damage dark-field imaging of optical elements," Chin. Opt. Lett. 22, 041101 (2024)
Category: Imaging Systems and Image Processing
Received: Oct. 17, 2023
Accepted: Dec. 11, 2023
Posted: Dec. 14, 2023
Published Online: May. 6, 2024
The Author Email: Fengdong Chen (chenfd@hit.edu.cn), Fa Zeng (cengfa@tsinghua.org.cn), Guodong Liu (lgd@hit.edu.cn)