Chinese Journal of Lasers, Volume. 36, Issue 3, 564(2009)

Relationship between Antenna Contamination and Laser Wavelength in Optical Communication

Wu Dakun1,2、* and Zhou Yanping1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(42)

    [1] [1] J. M. Kahn,R. H. Katz, K. S. J Pister. Mobile networking for smart dust[C]. Proc. of ACM/IEEE Intl. ConMYM on Mohile Computing and Networking (MobiCom 99), Seattle,WA, August 1999,17~19

    [2] [2] P.B. Chu, N.R. Lo, E. Berg et al.. Optical communication using micro comer cuber reflectors[C]. Proc. of IEEE MEMS Workshop, Nagoya, Japan, 1997, 1:26~30, 350~55

    [3] [3] T.H.Carbonneau, D.R.Wisely. Opportunities and challenges for optical wireless; the competitive advantage of free-space telecommunications links in today’s crowded marketplace[C]. SPIE, 1997,3232:119~128

    [4] [4] M. M. Ibrahim, A. M. Ibrahim. Performance analysis of optical receivers with space diversity reception[J]. IEE Proc.-Commun., 1996, 143(6):369~372

    [5] [5] H. Willebrand, B. S. Ghuman. Free Space Optics: Enabling Optical Connectivity in Today’s Networks[M]. Indianapolis, IN: Sams, 2002

    [6] [6] L. Andrews, R. L. Phillips, C. Y. Hopen. Laser Beam Scintillation With Applications[M]. Philadelphia, PA: SPIE Press, 2001

    [7] [7] Arun K. Majumdar, Jennifer C, Ricklin. Effects of the atmospheric channel on free-space laser communications[C]. SPIE, 2005, 5892:58920K

    [8] [8] Da Daoan, Li Wangkui. Vacuum Technology in Space[M]. Beijing: China Aerospace Press, 1995. 375~377

    [9] [9] M. D. Chou, K. T. Lee, S. C. Tsay et al.. Parameterization of cloud longwave scattering foruse in atmospheric models[J]. J. Climate. 1999,12:129~169

    [11] [11] F. M. Kahnert. Numerical methods in electromagnetic scattering theory[J]. JQSRT, 2003,79~80(1):775~824

    [12] [12] A. Taflove, M. E. Brodwin. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations[J]. IEEE Trans. Microwave Theory Technol. 1975, MTT-23, 623~630

    [13] [13] A. Taflove. Computational Electrodynamics: The Finite-Difference Time-Domain Method[M]. 2nd ed., Artech House, Norwood, 2000

    [14] [14] Wenbo Sun. Light scattering by nonspherical particles: numerical simulation and applications[D]. PhD dissertation, 2000

    [16] [16] He Xiaodong, Zhao Anping, Yu Rongjin et al.. Analysis of microstrip line and optical waveguide with the two-dimensional finite difference time domain method[J]. J. Opto electronics·Laser, 1998,9(5):392~395

    [19] [19] A. Dunn, R. Richards-Kortum. Three-dimensional computation of light scattering from cells[J]. IEEE J. Sel. Top. Quantum Electron, 1996,2:898~905

    [20] [20] A. Dunn, C. Smithpeter, A. Welch et al.. Finite-difference time-domain simulation of light scattering from single Cell[J]. J. Biomed. Opt., 1997,2:262~266

    [21] [21] R. Drezek R, A. Dunn, R. Richards-Kortum. Light scattering from cell: finite-difference time-domain simulations and goniometric measurements[J]. Appl. Opt., 1999,38:3651~3661

    [22] [22] R. A. Drezek, A. K. Dunn, R. R. Richards-Kortum. A pulsed finite-difference time-domain(FDTD)method for calculating light scattering from biological cells over broad wavelength ranges[J]. Opt. Express, 2000,6:147~157

    [23] [23] P. Yang, K. N. Liou. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space[J]. J. Opt. Soc. Am. A, 1996,13:2072~2085

    [24] [24] V. Stavros, Georgakopoulos, A. Rosemary et al.. A Hybrid fourth-order FDTD utilizing a second-order FDTD subgrid[J]. IEEE Microwave and Wireless Components Letters, 2001,11(11):462~464

    [25] [25] P. Yang, K. N. Liou. Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models[J]. J. Opt. Soc. Am. A, 1995,12:162~176

    [26] [26] W. Sun, Q. Fu. Finite-difference time domain solution of light scattering by dielectric particles with a perfectly matched layer absobing boundary condition[J]. Appl. Opt., 1999,38:3141~3151

    [27] [27] A. Maxim, Yurkin1, Alfons G. Hoekstra, R. Scott Brock et al.. Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers[J]. Opt. Express, 2007,15(26):17902~17911

    [28] [28] Zheng Fenghua, Chen Zhizhang, Zhang Jiazong. A finite-difference time-domain method without the courant stability conditions[J]. IEEE Microwave and Guided Wave Letters, 1999,9(11):441~443

    [29] [29] K. S. Yee. Numberical solution of initial boundary value problems involving Maxwell’s equation in isotropic media[J]. IEEE Trans. Antennas and Propagation, 1966,14(3):302~307

    [30] [30] T. Halil, Eyyubolu, Yahya Baykal. Analysis of reciprocity of cos-Gaussian and cosh- Gaussian laser beams in a turbulent atmosphere[J]. Opt. Express, 2004,12(20):4659~4674

    [31] [31] Halil Tanyer Eyyubolu. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere[J]. JOSA A, 2005,22(8):1527~1535

    [32] [32] Halil Tanyer Eyyubolu. Propagation of Hermite-cosh-Gaussian laser beams in turbulent atmosphere[J]. Opti. Commun., 2005,245(1~6,17):37~47

    [33] [33] T. Halil, Eyyubolu. Serap Altay, Yahya Baykal. Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence[J]. Opt. Commun., 2006,264(1):25~34

    [34] [34] H. T. Eyyubolu, Y. Baykal. Hermite-sine-Gaussian and Hermite-sinh-Gaussian laser beams in turbulent atmosphere[J]. J. Opt. Soc. Am. A, 2005,22:2709~2718

    [35] [35] T. Halil, Eyyubolu, Yahya Baykal, Emre Sermutlu. Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere[J]. Opt. Commun., 2006,265:399~405

    [39] [39] Kamran Shaik, Hainid Hemmati. Wavelength selection criteria for laser communecations[C]. SPIE, 1995,2381:342~357

    [40] [40] Ma Jing, Tan Liying, Wu Dianhong. Relationship between volume of transmitting antenna and wavelength of intersatellite optical communications, remote test and remote control[J]. J. Telemtry, Tracking and Command, 1996, 17(6):45~47

    [41] [41] Tan Liying, Ma Jin, Qin Ruhu et al.. Choice of wavelength of intersatellite optical communications[J]. J. Harbin Institute of Technology, 1994, 26(3):24~27

    [42] [42] R. M. Lerner. The VUV as a wavelength region for optical intersatellite communications[J]. AIAA,1974,74~499

    CLP Journals

    [1] Wu Dakun, Zhou Yanping. Performance Test and Analysis for Imaging System of Contaminated Optical Surface[J]. Acta Optica Sinica, 2010, 30(2): 411

    Tools

    Get Citation

    Copy Citation Text

    Wu Dakun, Zhou Yanping. Relationship between Antenna Contamination and Laser Wavelength in Optical Communication[J]. Chinese Journal of Lasers, 2009, 36(3): 564

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical communication

    Received: Jul. 7, 2008

    Accepted: --

    Published Online: Mar. 17, 2009

    The Author Email: Dakun Wu (wu.dk@hit.edu.cn)

    DOI:

    Topics