Journal of Quantum Optics, Volume. 28, Issue 4, 350(2022)

Propagation Properties of Laguerre-Gaussian Vortex Beams in Electromagnetically-induced-transparency Media

WANG Yong1, WU Jin-ze1,2、*, YANG Xu-dong1, and LI Jin-hong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(40)

    [1] [1] FLEISCHHAUER M, IMAMOGLU A, MARANGOS J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2):633-673. DOI: 10.1103/revmodphys.77.633.

    [2] [2] BOLLER K J, IMAMOGLU A, HARRIS S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991, 66(20):2593-2596. DOI: 10.1103/PhysRevLett.66.2593.

    [3] [3] GEA-BANACLOCHE J, LI Y Q, JIN S Z, et al. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment[J]. Physical Review A, 1995, 51(1):576. DOI: 10.1103/PhysRevA.51.576.

    [4] [4] HEINZE G, HUBRICH C, HALFMANN T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 2013, 111(3):033601. DOI: 10.1103/physrevlett.111.033601.

    [5] [5] LVOVSKY A I, SANDERS B C, TITTEL W. Optical quantum memory[J]. Nature Photonics, 2009, 3(12):706-714. DOI: 10.1038/nphoton.2009.231.

    [6] [6] JAIN M, XIA H, YIN G Y, et al. Efficient nonlinear frequency conversion with maximal atomic coherence[J]. Physical Review Letters, 1996, 77(21):4326. DOI: 10.1103/PhysRevLett.77.4326.

    [7] [7] BRAJE D A, BALI V, GODA S, et al. Frequency mixing using electromagnetically induced transparency in cold atoms[J]. Physical Review Letters, 2004, 93(18):183601. DOI: 10.1103/physrevlett.93.183601.

    [8] [8] BOYER V, MARINO A M, POOSER R C, et al. Entangled images from four-wave mixing[J]. Science, 2008, 321(5888):544-547. DOI: 10.1126/science.1158275.

    [9] [9] GUO M J, ZHOU H T, WANG D, et al. Experimental investigation of high-frequency-difference twin beams in hot cesium atoms[J]. Physical Review A, 2014, 89(3):1964-1964. DOI: 10.1103/physreva.89.033813.

    [10] [10] LEE J C, PARK K K, ZHAO T M, et al. Einstein-podolsky-rosen entanglement of narrow-band photons from cold atoms[J]. Physical Review Letters, 2016, 117(25):250501. DOI: 10.1103/physrevlett.117.250501.

    [11] [11] MONROE C. Quantum information processing with atoms and photons[J]. Nature, 2002, 416(6877):238-246. DOI: 10.1038/416238a.

    [12] [12] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum metrology[J]. Physical Review Letters, 2006, 96(1):010401. DOI: 10.1103/PhysRevLett.96.010401.

    [13] [13] GIOVANNETTI V, LLOYD S, MACCONE L. Advances in quantum metrology[J]. Nature Photonics, 2011, 5:222-229. DOI: 10.1038/nphoton.2011.35.

    [14] [14] PENG P, CAO W X, SHEN C, et al. Anti-parity-time symmetry with flying atoms[J]. Nature Physics, 2016, 12:1139-1148. DOI: 10.1038/nphys3842.

    [15] [15] HE Y Y, WU J Z, HU Y D, et al. Unidirectional reflectionless anti-parity-time-symmetric photonic lattices of thermal atoms[J]. Physical Review A, 2022, 105(4):043712. DOI: 10.1103/physreva.105.043712.

    [16] [16] WANG D W, ZHOU H T, GUO M J, et al. Optical diode made from a moving photonic crystal[J]. Physical Review Letters, 2013, 110(9):093901. DOI: 10.1103/physrevlett.110.093901.

    [17] [17] WU J Z, ZHANG J X, ZHU S J, et al. Spin-hall effect of light and its enhancement in multilevel atomic system[J]. Optics Letters, 2020, 45(1):149. DOI: 10.1364/ol.45.000149.

    [18] [18] LIU J H, WU J Z. Detecting the transverse spin density of light via electromagnetically induced transparency[J]. Optics Express, 2022, 30(13):24009-24019. DOI: 10.1364/oe.463519.

    [19] [19] CAI H, LIU J H, WU J Z, et al. Experimental observation of momentum-space chiral edge currents in room-temperature atoms[J]. Physical Review Letters, 2019, 122(2):023601. DOI: 10.1103/physrevlett.122.023601.

    [20] [20] FORBES A, OLIVEIRA M, DENNIS M R. Structured light[J]. Nature Photonics, 2021, 15:253-262. DOI: 10.1038/s41566-021-00780-4.

    [21] [21] WANG J, LIANG Y Z. Generation and Detection of Structured Light: A Review[J]. Frontiers in Physics, 2021, 9:688284. DOI: 10.3389/fphy.2021.688284.

    [22] [22] TERRIZA G M, TORRES J P, TORNER L. Twisted photons[J]. Nature Physics, 2007, 3:305-310. DOI: 10.1038/nphys607.

    [23] [23] SHEN Y J, WANG X J, XIE Z W, et al. Optical vortices 30 years on:OAM manipulation from topological charge to multiple singularities[J]. Light-Science & Applications, 2019, 8(1):29. DOI: 10.1038/s41377-019-0194-2.

    [24] [24] RADWELL N, CLARK T W, PICCIRILLO B, et al. Spatially dependent electromagnetically induced transparency[J]. Physical Review Letters, 2015, 114(12):123603. DOI: 10.1103/physrevlett.114.123603.

    [25] [25] WALKER G, ARNOLD A S, FRANKE-ARNOLD S. Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor[J]. Physical Review Letters, 2012, 108(24):243601. DOI: 10.1103/physrevlett.108.243601.

    [26] [26] DING D S, ZHANG W, ZHOU Z Y, et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble[J]. Physical Review Letters, 2015, 114(5):050502. DOI: 10.1103/physrevlett.114.050502.

    [27] [27] AKULSHIN A M, NOVIKOVA I, MIKHAILOV E E, et al. Arithmetic with optical topological charges in stepwise-excited Rb vapor[J]. Optics Letters, 2016, 41(6):1146-1149. DOI: 10.1364/ol.41.001146.

    [28] [28] WANG W, ZHANG K, JING J T. Large-scale quantum network over 66 orbital angular momentum optical modes[J]. Physical Review Letters, 2020, 125(14):140501. DOI: 10.1103/PhysRevLett.125.140501.

    [29] [29] CHEN Y X, LIU S S, LOU Y B, et al. Orbital angular momentum multiplexed quantum dense coding[J]. Physical Review Letters, 2021, 127(9):093601. DOI: 10.1103/PhysRevLett.127.093601.

    [30] [30] LIU S S, LOU Y B, JING J T. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation[J]. Nature Communications, 2020, 11:3875. DOI: 10.1038/s41467-020-17616-4.

    [31] [31] LI S J, PAN X Z, REN Y, et al. Deterministic generation of orbital-angular-momentum multiplexed tripartite entanglement[J]. Physical Review Letters, 2020, 124(8):083605. DOI: 10.1103/PhysRevLett.124.083605.

    [32] [32] WANG X T, FU J, LIU S S, et al. Self-healing of multipartite entanglement in optical quantum networks[J]. Optica, 2022, 9(6):663-669. DOI: 10.1364/optica.458939.

    [33] [33] PAN X Z, YU S, ZHOU Y F, et al. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic vapor[J]. Physical Review Letters, 2019, 123(7):070506. DOI: 10.1103/PhysRevLett.123.070506.

    [34] [34] CASTELLUCCI F, CLARK T W, SELYEM A, et al. Atomic compass: Detecting 3D magnetic field alignment with vector vortex light[J]. Physical Review Letters, 2021, 127(23):233202. DOI: 10.1103/physrevlett.127.233202.

    [35] [35] SIEGMAN A E. Lasers[M]. California, University Science Books, 1986:777-811.

    [36] [36] WU J Z, LIU J H, HE Y Y, et al. Quantum interference manipulation and enhancement with fluctuation-correlation-induced dephasing in an atomic system[J]. Physical Review A, 2018, 98(4):043829. DOI: 10.1103/physreva.98.043829.

    [39] [39] WANG F, CAI Y J, KOROTKOVA O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders[J]. Optics Express, 2009, 17(25):22366-22379. DOI: 10.1364/oe.17.022366.

    [40] [40] WANG J, LI J H, GUO M J, et al. Change in phase singularities of a partially coherent Gaussian vortex beam propagating in a GRIN fiber[J]. Optics Express, 2020, 28(4):4661-4673. DOI: 10.1364/oe.386167.

    [41] [41] YANG S, WANG J, GUO M J, et al. Propagation properties of Gaussian vortex beams through the gradient-index medium[J]. Optics Communications, 2020, 465:125559. DOI: 10.1016/j.optcom.2020.125559.

    Tools

    Get Citation

    Copy Citation Text

    WANG Yong, WU Jin-ze, YANG Xu-dong, LI Jin-hong. Propagation Properties of Laguerre-Gaussian Vortex Beams in Electromagnetically-induced-transparency Media[J]. Journal of Quantum Optics, 2022, 28(4): 350

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 4, 2022

    Accepted: --

    Published Online: Mar. 5, 2023

    The Author Email: WU Jin-ze (wujinze@tyust.edu.cn)

    DOI:10.3788/jqo20222804.0602

    Topics