Journal of Inorganic Materials, Volume. 40, Issue 4, 397(2025)

Cu2O/Cu Hollow Spherical Heterojunction Photocatalysts Prepared by Wet Chemical Approach

Xianghua JIA, Huixia ZHANG, Yanfeng LIU, and Guihong ZUO
Author Affiliations
  • School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang 157011, China
  • show less
    References(36)

    [1] SINGHA A, KAISHYOP J, KHAN T S et al. Visible-light-driven toluene oxidation to benzaldehyde over WO3 nanostructures[J]. ACS Applied Nano Materials, 21818(2023).

    [2] JIAN L, ZHAO H, DONG Y M et al. Graphite carbon ring modified carbon nitride with a strong built-in electric field for high photocatalysis-self-Fenton performance[J]. Catalysis Science & Technology, 7379(2022).

    [3] TOE C Y, LAMERS M, DITTRICH T et al. Facet-dependent carrier dynamics of cuprous oxide regulating the photocatalytic hydrogen generation[J]. Materials Advances, 2200(2022).

    [4] ONG W J, TAN L L, CHAI S P et al. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization[J]. Nanoscale, 1946(2014).

    [5] YANG C, LIU Z L, SU Z L et al. Combined effect of oxygen vacancies and mesopore sizes in ZnO/SiO2 adsorbents on boosting the H2S removal efficiency in moist conditions[J]. Advanced Functional Materials, 2409214(2024).

    [6] LI W J, DA P M, ZHANG Y Y et al. WO3 nanoflakes for enhanced photoelectrochemical conversion[J]. ACS Nano, 11770(2014).

    [7] BANIAMERIAN H, SHOKROLLAHZADEH S, SAFAVI M et al. Visible-light-activated Fe2O3-TiO2 nanoparticles enhance biofouling resistance of polyethersulfone ultrafiltration membranes against marine algae Chlorella vulgaris[J]. Scientific Reports, 24831(2024).

    [8] XIONG L K, ZHANG X, CHEN L et al. Geometric modulation of local CO flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production[J]. Advanced Materials, 2101741(2021).

    [9] LIU W Q, BAI P Y, WEI S L et al. Electron-rich Cu0-Cu2O heterogeneous interface constructed via controllable electrochemical reconstruction for a single CO2 deep-reduction product ethylene[J]. Applied Catalysis B: Environment and Energy, 123831(2024).

    [10] KIM H E, WI D H, LEE J S et al. Photoelectrochemical nitrate and nitrite reduction using Cu2O photocathodes[J]. ACS Energy Letters, 1993(2024).

    [11] WU E T, HUANG M H. Photocatalytic oxidative amine coupling with 4-nitrophenylacetylene-modified Cu2O polyhedra[J]. ACS Catalysis, 14746(2023).

    [12] CHEN B H, KUMAR G, WEI Y J et al. Experimental revelation of surface and bulk lattices in faceted Cu2O crystals[J]. Small, 2303491(2023).

    [13] ZHANG Y Y, CHEN Y X, WANG X W et al. Low-coordinated copper facilitates the *CH2CO affinity at enhanced rectifying interface of Cu/Cu2O for efficient CO2-to-multicarbon alcohols conversion[J]. Nature Communications, 5172(2024).

    [14] ZHANG Z H, SONG R, YU Z Y et al. Crystal-plane effect of Cu2O templates on compositions, structures and catalytic performance of Ag/Cu2O nanocomposites[J]. CrystEngComm, 2002(2019).

    [15] ZHU M Y, CHENG Y K, LUO Q et al. A review of synthetic approaches to hollow nanostructures[J]. Materials Chemistry Frontiers, 2552(2021).

    [17] POOLAKKANDY R R, MENAMPARAMBATH M M. Soft- template-assisted synthesis: a promising approach for the fabrication of transition metal oxides[J]. Nanoscale Advances, 5015(2020).

    [19] FANG Y J, YU X Y, LOU X W. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries[J]. Advanced Materials, 1706668(2018).

    [20] DONG Y L, TAO F F, WANG L X et al. One-pot preparation of hierarchical Cu2O hollow spheres for improved visible-light photocatalytic properties[J]. RSC Advances, 22387(2020).

    [21] LV T T, XING H Z, YANG H M et al. Rapid synthesis of Cu2O hollow spheres at low temperature and their catalytic performance for the decomposition of ammonium perchlorate[J]. CrystEngComm, 7985(2021).

    [22] LIU B Q, YAO X, ZHANG Z J et al. Synthesis of Cu2O nanostructures with tunable crystal facets for electrochemical CO2 reduction to alcohols[J]. ACS Applied Materials & Interfaces, 39165(2021).

    [23] ZHOU B, LIU Z G, ZHANG H J et al. One-pot synthesis of Cu2O/Cu self-assembled hollow nanospheres with enhanced photocatalytic performance[J]. Journal of Nanomaterials, 2014, 291964(2014).

    [24] CHANG J Y, BAO Q W, ZHANG C et al. Rapid preparation and photocatalytic properties of octahedral Cu2O@Cu powders[J]. Advanced Powder Technology, 144(2021).

    [25] CHANG Y, TEO J J, ZENG H C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres[J]. Langmuir, 1074(2005).

    [26] ZHU S C, CHEN Z Y, LIU Z P et al. Thermodynamics and catalytic activity of the reduced Cu on a Cu2O surface from machine learning atomic simulation[J]. ACS Materials Letters, 3690(2024).

    [27] YUE Y M, ZHANG P X, WANG W et al. Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap Cu2S decorated Cu2O nanocomposites for efficient removal of organic pollutants[J]. Journal of Hazardous Materials, 121302(2020).

    [28] BAO Y C, CHEN K Z. A novel Z-scheme visible light driven Cu2O/Cu/g-C3N4 photocatalyst using metallic copper as a charge transfer mediator[J]. Molecular Catalysis, 187(2017).

    [29] SARAEV A A, KURENKOVA A Y, MISHCHENKO D D et al. Cu/TiO2 photocatalysts for CO2 reduction: structure and evolution of the cocatalyst active form[J]. Transactions of Tianjin University, 140(2024).

    [30] XU B G, WANG B, ZHANG H Y et al. Z-scheme Cu2O nanoparticle/graphite carbon nitride nanosheet heterojunctions for photocatalytic hydrogen evolution[J]. ACS Applied Nano Materials, 8475(2022).

    [31] LI Z J, WANG M Z, JIA Y Y et al. CeO2/Cu2O/Cu tandem interfaces for efficient water-gas shift reaction catalysis[J]. ACS Applied Materials & Interfaces, 31584(2023).

    [32] LI D Y, ZAN J, WU L P et al. Heterojunction tuning and catalytic efficiency of g-C3N4-Cu2O with glutamate[J]. Industrial & Engineering Chemistry Research, 4000(2019).

    [33] ZHANG Z J, WANG W Z, GAO E P et al. Photocatalysis coupled with thermal effect induced by SPR on Ag-loaded Bi2WO6 with enhanced photocatalytic activity[J]. The Journal of Physical Chemistry C, 25898(2012).

    [34] WANG Y B, ZHAO X, CAO D et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J]. Applied Catalysis B: Environmental, 79(2017).

    [35] MEI W D, LI D Y, XU H M et al. Effect of electronic migration of MIL-53(Fe) on the activation of peroxymonosulfate under visible light[J]. Chemical Physics Letters, 694(2018).

    [36] ZHANG H, DIAO J F, LIU Y H. In situ-grown Cu dendrites plasmonically enhance electrocatalytic hydrogen evolution on facet-engineered Cu2O[J]. Advanced Materials, 2305742(2023).

    Tools

    Get Citation

    Copy Citation Text

    Xianghua JIA, Huixia ZHANG, Yanfeng LIU, Guihong ZUO. Cu2O/Cu Hollow Spherical Heterojunction Photocatalysts Prepared by Wet Chemical Approach [J]. Journal of Inorganic Materials, 2025, 40(4): 397

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 12, 2024

    Accepted: --

    Published Online: Sep. 2, 2025

    The Author Email:

    DOI:10.15541/jim20240370

    Topics