Journal of Infrared and Millimeter Waves, Volume. 44, Issue 2, 156(2025)

Time and frequency domain characteristics of a quasi-continuous 2 μm thulium-doped fiber laser

Xue-Han MEI1, Xiang CHEN2、**, Gang XU2, Yuan-Zhong YANG2, Zhong ZHANG2, Cheng LEI1, Sheng LI3, Xing-Huan WANG3, and Du WANG1、*
Author Affiliations
  • 1The Institute of Technological Sciences,Wuhan University,Wuhan 430072,China
  • 2Wuhan Strongest Laser Technology Co.,Ltd.,Wuhan 430074,China
  • 3Department of Urology,Zhongnan Hospital of Wuhan University,Wuhan 430071,China
  • show less
    References(26)

    [1] Rothman L S, Gordon I E, Babikov Y et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 4-50(2013).

    [2] Nie W, Kan R F, Xu Z Y et al. Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 66, 204204(2017).

    [3] Koch G J. Field testing of a high-energy 2-μm Doppler lidar[J]. Journal of Applied Remote Sensing, 4, 043512(2010).

    [4] Blackmon R L, Irby P B, Fried N M. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects[J]. Journal of Biomedical Optics, 16, 071403-071407(2011).

    [5] Huang Y, Jivraj J, Zhou J et al. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications[J]. Optics Express, 24, 16674-16686(2016).

    [6] Enikeev D, Taratkin M, Klimov R et al. Thulium-fiber laser for lithotripsy: first clinical experience in percutaneous nephrolithotomy[J]. World Journal of Urology, 38, 3069-3074(2020).

    [7] Enikeev D, Taratkin M, Klimov R et al. Superpulsed thulium fiber laser for stone dusting: In search of a perfect ablation regimen—A prospective single-center study[J]. Journal of Endourology, 34, 1175-1179(2020).

    [8] Shah D, Patil A, Reddy N et al. A clinical experience of thulium fibre laser in miniperc to dust with suction: a new horizon[J]. World Journal of Urology, 39, 2727-2732(2020).

    [9] Böhms S, Schmidt M, Stichel T et al. Single-step laser plastic deposition (LPD) using a near-infrared Thulium fiber-laser[J]. Polymer Testing, 81, 106185(2020).

    [10] De Pelsmaeker J, Graulus G J, Van Vlierberghe S et al. Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterization[J]. Journal of Materials Processing Technology, 255, 808-815(2018).

    [11] Mingareev I, Weirauch F, Olowinsky A et al. Welding of polymers using a 2μm thulium fiber laser[J]. Optics & Laser Technology, 44, 2095-2099(2012).

    [12] Dubinskii M, Creeden D, Wood G L et al. Thulium fiber laser-pumped mid-IR OPO[C], 6952, 204-210(2008).

    [13] Gebhardt M, Gaida C, Kadwani P et al. High peak-power mid-infrared ZnGeP2 optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system[J]. Optics Letters, 39, 1212-1215(2014).

    [14] Schneider J, Forster P, Romano C et al. High pulse energy ZnGeP2 OPO directly pumped by a Q-switched Tm3+-doped single-oscillator fiber laser[J]. Optics Letters, 46, 2139-2142(2021).

    [15] Kieleck C, Berrou A, Donelan B et al. 6.5 W ZnGeP2 OPO directly pumped by a Q-switched Tm3+-doped single-oscillator fiber laser[J]. Optics Letters, 40, 1101-1104(2015).

    [16] Xu H. Study of time-domain modulation characteristics of high-power ytterbium-doped fiber lasers[D](2016).

    [17] Li S Y. Study on time domain characteristics of quasi continuous fiber laser[D](2020).

    [18] Ding X Y, Wang L, Zeng L F et al. Double-ended output near-single-mode quasi-continuous wave monolithic fiber laser[J]. Acta Physica Sinica, 72, 89-97(2023).

    [19] Pal D, Sen R, Pal A. Design of all‐fiber thulium laser in CW and QCW mode of operation for medical use[J]. physica status solidi c, 14, 1600127(2016).

    [20] Chen H. Study on the output characteristics of distributed side-coupled cladding-pumped fiber laser[D](2020).

    [21] Yan M J. Research on time-domain instability and its suppression in high-power continuous-wave fiber lasers[D](2021).

    [22] Jackson S D, Sabella A, Lancaster D G. Application and development of high-power and highly efficient Silica-based fiber lasers operating at 2 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 567-572(2007).

    [23] Tankala K, Frith G, Carter A et al. Mitigation of photodegradation in 790nm-pumped Tm-doped fibers[C], 7580, 98-106(2010).

    [24] Jackson S D, King T A. Theoretical modeling of Tm-doped silica fiber lasers[J]. Journal of Lightwave Technology, 17, 948-956(1999).

    [25] Li K X. Pulsed fiber lasers by using two-dimensional materials as saturable absorbers[D](2017).

    [26] Fang Y. Research on all-fiber passively Q-switched ytterbium-doped fiber laser[D](2017).

    Tools

    Get Citation

    Copy Citation Text

    Xue-Han MEI, Xiang CHEN, Gang XU, Yuan-Zhong YANG, Zhong ZHANG, Cheng LEI, Sheng LI, Xing-Huan WANG, Du WANG. Time and frequency domain characteristics of a quasi-continuous 2 μm thulium-doped fiber laser[J]. Journal of Infrared and Millimeter Waves, 2025, 44(2): 156

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared Physics, Materials and Devices

    Received: Jun. 12, 2024

    Accepted: --

    Published Online: Mar. 14, 2025

    The Author Email: Xiang CHEN (chenx@whscjmjg.com), Du WANG (wdxz@foxmail.com)

    DOI:10.11972/j.issn.1001-9014.2025.02.003

    Topics