Journal of Innovative Optical Health Sciences, Volume. 17, Issue 6, 2450017(2024)
In vivo fluorescence flow cytometry reveals that the nanoparticle tumor vaccine OVA@HA-PEI effectively clears circulating tumor cells
[1] R. L. Siegel, K. D. Miller. Cancer statistics, 2023. CA: Cancer J Clin., 73, 17-48(2023).
[2] D. T. Debela. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 9, 1-10(2021).
[3] P. Krzyszczyk. The growing role of precision and personalized medicine for cancer treatment. Technology, 6, 3-4(2018).
[4] Y.-Q. Liu, X.-L. Wang. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 80, 153402(2021).
[5] E. Schiff, E. Ben-Arye. Complementary therapies for side effects of chemotherapy and radiotherapy in the upper gastrointestinal system. Eur. J. Integr. Med., 3, 11-16(2011).
[6] V. Schirrmacher. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol., 54, 407-419(2019).
[7] K. Y. Helmy, S. A. Patel. Cancer immunotherapy: Accomplishments to date and future promise. Ther. Deliv., 4, 1307-1320(2013).
[8] M. Kudo. Combination cancer immunotherapy with molecular targeted agents/anti-CTLA-4 antibody for hepatocellular carcinoma. Liver Cancer, 8, 1-11(2019).
[9] D. Lee, K. Huntoon. Harnessing innate immunity using biomaterials for cancer immunotherapy. Adv. Mater., 33, 2007576(2021).
[10] N. E. Papaioannou, O. V. Beniata. Harnessing the immune system to improve cancer therapy. Annals of Translational Medicine, 4, 14(2016).
[11] J. A. Seidel, A. Otsuka. Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front. Oncol., 8, 86(2018).
[12] M. Z. Wojtukiewicz et al. Inhibitors of immune checkpoints — PD-1, PD-L1, CTLA-4 — new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev., 40, 949-982(2021).
[13] L. A. Emens, E. M. Jaffee. Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. Cancer Res., 65, 8059-8064(2005).
[14] I. C. Le Poole, M. A. T. Gerberi. Emerging strategies in tumor vaccines. Curr. Opin. Oncol., 14, 641-648(2002).
[15] D. Liu, X. Che. Tumor vaccines: Unleashing the power of the immune system to fight cancer. Pharmaceuticals, 16, 1384(2023).
[16] P. Bonaventura. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol., 10, 168(2019).
[17] M. Rezaei. Cancer vaccine in cold tumors: Clinical landscape, challenges, and opportunities. Curr. Cancer Drug Targets, 22, 6(2022).
[18] L. Wang, H. Geng. Hot and cold tumors: Immunological features and the therapeutic strategies. MedComm., 4, e343(2023).
[19] J. D. Gates, L. C. Benavides. Monitoring circulating tumor cells in cancer vaccine trials. Hum. Vaccines, 4, 389-392(2008).
[20] I. J. Guldvik, L. Ekseth. Circulating tumor cell persistence associates with long-term clinical outcome to a therapeutic cancer vaccine in prostate cancer. J. Pers. Med., 11, 605(2021).
[21] D. Lin, L. Shen. Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target. Therapy, 6, 404(2021).
[22] Y. Cao, H.-Y. Huang. Enhanced lysosomal escape of pH-responsive polyethylenimine–betaine functionalized carbon nanotube for the codelivery of survivin small interfering RNA and doxorubicin. ACS Appl. Mater. Interfaces, 11, 9763-9776(2019).
[23] A. Zintchenko, A. Philipp. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjugate Chem., 19, 1448-1455(2008).
[24] D. Park. Hyaluronic acid–polypyrrole nanoparticles as pH-responsive theranostics. Chem. Commun., 50, 15014-15017(2014).
[25] T. Xiao. Macrophage-mediated tumor homing of hyaluronic acid nanogels loaded with polypyrrole and anticancer drug for targeted combinational photothermo-chemotherapy. Theranostics, 11, 7057(2021).
[26] Q. Zhao. Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery. ACS Appl. Mater. Interfaces, 6, 20290-20299(2014).
[27] M. Li. Polydopamine-based nanoplatform for photothermal ablation with long-term immune activation against melanoma and its recurrence. Acta Biomater., 136, 546-557(2021).
[28] R. Xu et al. Hyaluronic acid/polyethyleneimine nanoparticles loaded with copper ion and disulfiram for esophageal cancer. Carbohydrate Polym., 261, 117846(2021).
[29] Y. Suo, Z. Gu. Advances of in vivo flow cytometry on cancer studies. Cytometry Part A, 97, 15-23(2020).
[30] Y. Yu, Y. Zheng. Detection of cells by flow cytometry: Counting, imaging, and cell classification. J. Innov. Opt. Health Sci., 16, 2330005(2023).
[31] Y. Suo, T. Liu. Near infrared in vivo flow cytometry for tracking fluorescent circulating cells. Cytometry Part A, 87, 878-884(2015).
[32] C. Dive, G. Brady. SnapShot: Circulating tumor cells. Cell, 168, 742-742.e1(2017).
[33] C. Alt, I. Veilleux. Retinal flow cytometer. Opt. Lett., 32, 3450-3452(2007).
[34] Z.-C. Fan, J. Yan. Real-time monitoring of rare circulating hepatocellular carcinoma cells in an orthotopic model by in vivo flow cytometry assesses resection on metastasis. Cancer Res., 72, 2683-2691(2012).
[35] Y. Zhang, X. Zhu. Activated platelets-targeting micelles with controlled drug release for effective treatment of primary and metastatic triple negative breast cancer. Adv. Funct. Mater., 29, 1806620(2019).
[36] D. A. Sipkins, X. Wei. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 435, 969-973(2005).
[37] K. Pang, C. Xie. Monitoring circulating prostate cancer cells by in vivo flow cytometry assesses androgen deprivation therapy on metastasis. Cytometry Part A, 93, 517-524(2018).
[38] S. Sivasankari, R. Kalaivizhi. A biodegradable silver oxide-treated hydroxyapatite nanoparticle (AgO@HA)-interlaced poly(etherimide)/poly(methylmethacrylate) membrane for blood purification: An in vitro study. Mater. Adv., 3, 4667-4683(2022).
[39] M. Zhang, X. Zhao. Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery. RSC Adv., 7, 3369-3375(2017).
[40] C. F. Rodrigues, N. Fernandes. HA/PEI-coated acridine orange-loaded gold-core silica shell nanorods for cancer-targeted photothermal and chemotherapy. Nanomedicine, 16, 2569-2586(2021).
[41] N. Sahiner, S. Sagbas. Polyethyleneimine modified poly(hyaluronic acid) particles with controllable antimicrobial and anticancer effects. Carbohydrate Polym., 159, 29-38(2017).
[42] T. Zhang, N. Song. Delayed ischemic preconditioning attenuated renal ischemia-reperfusion injury by inhibiting dendritic cell maturation. Cell. Physiol. Biochem., 46, 1807-1820(2018).
[43] Y. V. N. Cavalcanti, M. C. A. Brelaz. Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm. Med., 2012, 745483(2012).
[44] D. Jorgovanovic, M. Song. Roles of IFN-γ in tumor progression and regression: A review. Biomarker Res., 8, 49(2020).
[45] C. Dive, G. Brady. SnapShot: Circulating tumor cells. Cell, 169, 176(2017).
[46] S. Gerstberger. Metastasis. Cell, 186, 1564-1579(2023).
[47] E. D. Hay. An overview of epithelio-mesenchymal transformation. Acta Anatomica, 154, 8-20(2008).
[48] S. Perales et al. Liquid biopsy approach to pancreatic cancer. World J. Gastrointestinal Oncol., 13, 1263(2021).
[49] C. Xie, Z. Yang. Systemically infused mesenchymal stem cells show different homing profiles in healthy and tumor mouse models. Stem Cells Transl. Med., 6, 1120-1131(2017).
[50] N. Thakur, S. Thakur. Nanoparticles as smart carriers for enhanced cancer immunotherapy. Front. Chem., 8, 597806(2020).
[51] M. M. Cogels, R. Rouas. Humanized mice as a valuable pre-clinical model for cancer immunotherapy research. Front. Oncol., 11, 784947(2021).
[52] M. A. Carrillo, A. Zhen. The use of the humanized mouse model in gene therapy and immunotherapy for HIV and cancer. Front. Immunol., 9, 746(2018).
[53] J. Fu, D. B. Kanne. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med., 7, 283ra52(2015).
[54] K. Pang, B. Gu. Recent advances in fluorescence-based in vivo flow cytometry. J. Innov. Opt. Health Sci., 12, 1930008(2019).
[55] K. Camphausen, M. A. Moses. Radiation therapy to a primary tumor accelerates metastatic growth in mice1. Cancer Res., 61, 2207-2211(2001).
[56] Z. Chen, T. Wang. Circulating tumor cell is a clinical indicator of pretransplant radiofrequency ablation for patients with hepatocellular carcinoma. J. Oncol., 2021, 7776389(2021).
[57] Y. Li, N. Huang. Impact of liver tumor percutaneous radiofrequency ablation on circulating tumor cells. Oncol Lett., 16, 2839-2850(2018).
Get Citation
Copy Citation Text
Wei Jin, Yuting Fu, Sisi Ge, Han Sun, Kai Pang, Xunbin Wei. In vivo fluorescence flow cytometry reveals that the nanoparticle tumor vaccine OVA@HA-PEI effectively clears circulating tumor cells[J]. Journal of Innovative Optical Health Sciences, 2024, 17(6): 2450017
Category: Research Articles
Received: Apr. 9, 2024
Accepted: Jun. 4, 2024
Published Online: Nov. 13, 2024
The Author Email: Xunbin Wei (xwei@bjmu.edu.cn)