Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0228009(2023)

Remote Sensing Image Segmentation Network Based on Adaptive Multiscale and Contour Gradient

Mengjia Niu1, Yongjun Zhang1、*, Zhi Li1, Gang Yang2, Zhongwei Cui3, and Junwen Liu1
Author Affiliations
  • 1College of Computer Science and Technology, Guizhou University, Guiyang 550025, Guizhou, China
  • 2Guiyang Orbita Aerospace Science&Technology Co., Ltd., Guiyang 550027, Guizhou, China
  • 3Big Data Science and Intelligent Engineering Research Institute, Guizhou Education University, Guiyang 550018, Guizhou, China
  • show less
    Figures & Tables(13)
    Framework of remote sensing image semantic segmentation algorithm based on fused contour learning with deep convolutional neural network
    Multi-channel network framework based on attention mechanism
    Diagrams of internal structure of MA block. (a) Internal structure of a single MA block; (b) SK weight module
    Diagram of internal structure of D-MA block
    Visualization of ablation experiments compared in Vaihingen test set
    Comparison of prediction results with mainstream models on Vaihingen test set
    Comparison of prediction results with mainstream models on Potsdam test set
    Comparison of prediction results with mainstream models on WHU building test set
    • Table 1. Configuration parameters for profile extraction module

      View table

      Table 1. Configuration parameters for profile extraction module

      LayerOutput sizeOperatorStrideSize
      Branch-1256×256,64MA block11
      Branch-2256×256,64MA block11
      Down layer-1128×128,64Conv-block21/2
      Branch-3128×128,64MA block11/2
      Branch-4128×128,64MA block11/2
      Down layer-264×64,64Conv-block21/4
      Branch-564×64,128MA block11/4
    • Table 2. Model ablation experiments on Vaihingen dataset

      View table

      Table 2. Model ablation experiments on Vaihingen dataset

      ModelmIoU /%OA /%F1 /%ParamsFLOPs /109
      SegNet76.5087.9686.9920.7327.56
      Improved SegNet80.6988.6389.8120.9128.29
      with D-MMA84.2889.9390.3621.8231.39
      with D- MMA +CME86.5692.9392.5122.6934.36
    • Table 3. Comparison with other networks on Vaihingen dataset

      View table

      Table 3. Comparison with other networks on Vaihingen dataset

      ModelIoUF1OAmIoU
      impervious surfacesbuildinglow vegetationtreecar
      U-Net79.4585.2364.9374.7738.5186.9485.4368.58
      SegNet81.6986.4173.4378.3642.6386.9987.9676.50
      ERFNet77.5179.2762.3571.2735.2983.5782.0965.13
      PSPNet87.6991.9481.5284.7955.7989.8690.1981.16
      DSMNet2590.8291.5
      Fres- MFDNN2692.091.085.0
      Proposed model91.8993.6186.7288.6971.9392.5192.9386.56
    • Table 4. Comparison with other networks on Potsdam dataset

      View table

      Table 4. Comparison with other networks on Potsdam dataset

      ModelIoUF1OAmIoU
      impervious surfacesbuildinglow vegetationtreecar
      U-Net76.4483.2265.9258.0371.8783.1277.4571.10
      SegNet83.6391.7274.7071.6778.0085.3187.4577.94
      ERFNet61.4674.7851.8345.8517.0780.5772.3550.20
      PSPNet83.5992.9976.2873.0977.1185.7889.7880.61
      BAM-Unet-sc2788.5989.13
      ResUNet-a392.0991.50
      Proposed model85.3993.6478.8276.4881.5791.6592.1883.18
    • Table 5. Comparison with other network indicators on WHU building dataset

      View table

      Table 5. Comparison with other network indicators on WHU building dataset

      ModelF1OAmIoU
      U-Net89.3387.5983.01
      SegNet93.7392.5388.76
      ERFNe89.3387.5978.72
      PSPNet93.2892.1587.26
      DeNet2894.8090.12
      MA-FCN2995.1590.70
      Proposed model95.8194.0692.30
    Tools

    Get Citation

    Copy Citation Text

    Mengjia Niu, Yongjun Zhang, Zhi Li, Gang Yang, Zhongwei Cui, Junwen Liu. Remote Sensing Image Segmentation Network Based on Adaptive Multiscale and Contour Gradient[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0228009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 12, 2022

    Accepted: Mar. 14, 2022

    Published Online: Feb. 7, 2023

    The Author Email: Yongjun Zhang (niumj0130@163.com)

    DOI:10.3788/LOP220525

    Topics