Journal of Synthetic Crystals, Volume. 51, Issue 2, 229(2022)
Model-Free Adaptive Diameter Control of Monocrystalline Silicon Based on Bayesian Parameter Optimization
[1] [1] GOETZBERGER A, KNOBLOCH J, VO B. Crystalline silicon solar cells[M]. Chichester, UK: John Wiley & Sons, Ltd, 2014.
[3] [3] BROWN R A. Theory of transport processes in single crystal growth from the melt[J]. AIChE Journal, 1988, 34(6): 881-911.
[4] [4] GEVELBER M A, STEPHANOPOULOS G, WARGO M J. Dynamics and control of the Czochralski process Ⅱ. Objectives and control structure design[J]. Journal of Crystal Growth, 1988, 91(1/2): 199-217.
[5] [5] GEVELBER M A. Dynamics and control of the Czochralski process Ⅳ. Control structure design for interface shape control and performance evaluation[J]. Journal of Crystal Growth, 1994, 139(3/4): 286-301.
[6] [6] GALAZKA Z, WILKE H. Heat transfer and fluid flow during growth of Y3Al5O12 single crystals using the czochralski method[J]. Crystal Research and Technology, 2000, 35(11/12): 1263-1278.
[10] [10] ARMAOU A, CHRISTOFIDES P D. Crystal temperature control in the Czochralski crystal growth process[J]. AIChE Journal, 2001, 47(1): 79-106.
[11] [11] ABDOLLAHI J, IZADI M, DUBLJEVIC S. Model predictive temperature tracking in crystal growth processes[J]. Computers & Chemical Engineering, 2014, 71: 323-330.
[12] [12] ABDOLLAHI J, IZADI M, DUBLJEVIC S. Temperature distribution reconstruction in Czochralski crystal growth process[J]. AIChE Journal, 2014, 60(8): 2839-2852.
[13] [13] WINKLER J, NEUBERT M, RUDOLPH J. Nonlinear model-based control of the Czochralski process I: motivation, modeling and feedback controller design[J]. Journal of Crystal Growth, 2010, 312(7): 1005-1018.
[14] [14] WINKLER J, NEUBERT M, RUDOLPH J. Nonlinear model-based control of the Czochralski process Ⅱ: reconstruction of crystal radius and growth rate from the weighing signal[J]. Journal of Crystal Growth, 2010, 312(7): 1019-1028.
[15] [15] NEUBERT M, WINKLER J. Nonlinear model-based control of the Czochralski process Ⅲ: proper choice of manipulated variables and controller parameter scheduling[J]. Journal of Crystal Growth, 2012, 360: 3-11.
[16] [16] NEUBERT M, WINKLER J. Nonlinear model-based control of the Czochralski process Ⅳ: feedforward control and its interpretation from the crystal grower′s view[J]. Journal of Crystal Growth, 2014, 404: 210-222.
[25] [25] HOU Z S, WANG Z. From model-based control to data-driven control: survey, classification and perspective[J]. Information Sciences, 2013, 235: 3-35.
[26] [26] HOU Z S, CHI R H, GAO H J. An overview of dynamic-linearization-based data-driven control and applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4076-4090.
[27] [27] HOU Z S, JIN S T. A novel data-driven control approach for a class of discrete-time nonlinear systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1549-1558.
[33] [33] KLEIN A, FALKNER S, BARTELS S, et al. Fast bayesian optimization of machine learning hyperparameters on large datasets[J]. Machine Learning, 2016, arXiv: 1605.07079.
[34] [34] WANG X, EISSELER R, MOEHRING H C. Prediction and optimization of machining results and parameters in drilling by using Bayesian networks[J]. Production Engineering, 2020, 14(3): 373-383.
Get Citation
Copy Citation Text
LIN Guangwei, WANG Shan, ZHANG Xiya, PENG Xin, GAO Junwei, GAO Dedong. Model-Free Adaptive Diameter Control of Monocrystalline Silicon Based on Bayesian Parameter Optimization[J]. Journal of Synthetic Crystals, 2022, 51(2): 229
Category:
Received: Sep. 26, 2021
Accepted: --
Published Online: Mar. 24, 2022
The Author Email: Guangwei LIN (1026468163@qq.com)
CSTR:32186.14.