Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1210001(2023)

Fusion of Attention Mechanism and Deformable Residual Convolution for Liver Tumor Segmentation

Wenhan Yang and Miao Liao*
Author Affiliations
  • School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
  • show less
    Figures & Tables(13)
    Structure of improved U-Net model
    Structure of residual convolution module
    Structure of RBE module
    Schematic of deformable convolution. (a) Traditional convolution kernel; (b) deformable convolution kernel
    Dual attentional structure model
    Structure of channel attention
    Partial images of LITS dataset
    Data pre-processing. (a) Original CT image; (b) segmentation result of ribs and spine; (c) cropping diagram; (d) pre-processed image
    Visual comparison of probability graphs of different methods
    Segmentation results of different networks
    • Table 1. Comparison results of ablation experiments

      View table

      Table 1. Comparison results of ablation experiments

      ModuleDice /%VOE /%RVD /%ASD /mmMSSD /mm
      U-Net71.848.5-25.32.449.13
      U-Net+new skip-connection73.147.2-22.12.019.01
      U-Net+dual attention79.337.2-11.51.698.13
      U-Net+deformable Conv76.840.1-12.41.567.92
      U-Net+RBE82.036.7-7.31.347.32
      U-Net+ deformable Conv + dual attention81.938.8-8.71.427.54
      U-Net+RBE+deformable Conv+dual attention83.835.3-6.21.297.21
      U-Net+all modules85.232.4-3.20.986.61
    • Table 2. Performance comparison of different methods on LITS test set

      View table

      Table 2. Performance comparison of different methods on LITS test set

      MethodDice /%VOE /%RVD /%ASD /mmMSSD /mm
      U-Net1471.848.5-25.32.429.13
      BS-Unet1575.144.0-23.41.738.54
      A-Unet1776.240.6-14.41.427.92
      U-Net++1880.837.2-10.71.267.12
      U-Net3+2081.236.9-11.21.317.41
      MDCC-Unet2683.934.1-6.61.227.53
      proposed method85.232.2-3.20.986.61
    • Table 3. Performance comparison with other methods on LITS dataset

      View table

      Table 3. Performance comparison with other methods on LITS dataset

      MethodDice /%VOE /%RVD /%ASD /mmMSSD /mm
      RA-UNet2759.538.9-15.21.2896.775
      Method in Ref.[2867.045.04.06.66057.930
      Method in Ref.[2267.634.1-6.4
      Method in Ref.[2973.6937.80-15.78
      MA-Net3074.921.0-18.0
      CUResNets3175.237.9-15.9
      Method in Ref.[3283.3211.62-15.98
      Proposed method85.232.2-3.20.986.61
    Tools

    Get Citation

    Copy Citation Text

    Wenhan Yang, Miao Liao. Fusion of Attention Mechanism and Deformable Residual Convolution for Liver Tumor Segmentation[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 20, 2022

    Accepted: May. 25, 2022

    Published Online: May. 23, 2023

    The Author Email: Miao Liao (Liaomiaohi@126.com)

    DOI:10.3788/LOP221369

    Topics