Laser & Optoelectronics Progress, Volume. 57, Issue 23, 231405(2020)

Microstructure and Properties of Medium-Thick Stainless Steel by Laser-MIG Hybrid Welding

Zhiwei Chen1, Chengyuan Ma1, Bo Chen1,2、*, Caiwang Tan1,2, and Xiaoguo Song1,2
Author Affiliations
  • 1Shandong Key Laboratory of Special Welding Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, China
  • 2State Key Laboratory of Advanced Welding and Connection, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • show less
    Figures & Tables(14)
    Schematic diagram of the welding process
    Schematic diagram of bevel size
    Schematic of the tensile specimen. (a) Selection location of tensile sample; (b) size of tensile sample
    Cross-section morphology of welds with different combinations. (a) Sample A1; (b) sample A2; (c) sample A3; (d) sample A4
    Microstructure of 316L austenitic stainless steel
    Filling weld structure. (a) (d) HAZ of A1 and A3; (b) (e) weld center of A1 and A3; (c) (f) zones of A and B
    Underlying weld structure. (a) (d) HAZ of A1 and A2; (b) (e) weld center of A1 and A2; (c) (f) zones of C and D
    Schematic diagram of fracture locations of tensile test specimens
    Stress-strain curves at different positions of each sample joint. (a) Filling weld; (b) underlying weld
    Fracture morphology of tensile samples. (a) (b) Upper layer fracture of A1 and its micro area; (c) (d) upper layer fracture of A3 and its micro area; (e) (f) lower layer fracture of A1 and its micro area; (g) (h) lower layer fracture of A2 and its micro area
    Microhardness of different parts of the weld joint. (a) Filling layer; (b) underlying layer
    • Table 1. Chemical composition (mass fraction) of 316L austenitic stainless steel and ER316L stainless steel filler wire unit: %

      View table

      Table 1. Chemical composition (mass fraction) of 316L austenitic stainless steel and ER316L stainless steel filler wire unit: %

      MaterialCCrNiMoMnPSSi
      316L0.0216.829.841.781.520.030.030.50
      ER316L0.0318.9112.032.012.020.020.010.56
    • Table 2. Welding process parameters

      View table

      Table 2. Welding process parameters

      SamplePositionLaser power /WCurrent /AWelding speed /(m·min-1)
      A1Root pass35001500.8
      Filler or cover pass15002500.8
      A2Root pass400000.8
      Filler or cover pass15002500.8
      A3Root pass35001500.8
      Filler or cover pass02800.6
      A4Root pass400000.8
      Filler or cover pass02800.6
    • Table 3. Tensile strength and elongation of different samples

      View table

      Table 3. Tensile strength and elongation of different samples

      ParameterLocationA1A2A3A4
      ULTensile strength /MPa637.01619.27554.52551.57
      Elongation /%25.1322.7113.2911.35
      BLTensile strength /MPa648.58661.98625.63406.48
      Elongation /%29.0734.9823.8411.57
      BMTensile strength /MPa678.92
      Elongation /%47.50
    Tools

    Get Citation

    Copy Citation Text

    Zhiwei Chen, Chengyuan Ma, Bo Chen, Caiwang Tan, Xiaoguo Song. Microstructure and Properties of Medium-Thick Stainless Steel by Laser-MIG Hybrid Welding[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231405

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Feb. 28, 2020

    Accepted: Apr. 15, 2020

    Published Online: Dec. 9, 2020

    The Author Email: Bo Chen (chenbo@hitwh.edu.cn)

    DOI:10.3788/LOP57.231405

    Topics