Journal of Semiconductors, Volume. 40, Issue 7, 072902(2019)
Stable single photon sources in the near C-band range above 400 K
[1] W K Wootters, W H Zurek. A single quantum cannot be cloned. Nature, 299, 802(1982).
[2] V Scarani, H Bechmann-Pasquinucci, N J Cerf et al. The security of practical quantum key distribution. Rev Mod Phys, 81, 1301(2009).
[3] A Aspuru-Guzik, P Waither. Photonic quantum simulators. Nat Phys, 8, 285(2012).
[4] P Kok, W J Munro, K Nemoto et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 79, 135(2007).
[5]
[6]
[7] A P Lund, M J Bremner, T C Ralph. Quantum sampling problems, Boson sampling and quantum supremacy. npj Quantum Inform, 3, 15(2017).
[8] R Lapkiewicz, P Li, C Schaeff et al. Experimetnal non-classicality of an indivisible quantum system. Nature, 474, 490(2011).
[9] Y Xiao, Z P Xu, Q Li et al. Experimental observation of quantum state-independent contextuality under no-signaling conditions. Opt Express, 26, 32(2018).
[10] Y Xiao, Z P Xu, Q Li et al. Experimental test of quantum correlations from platonic graphs. Optica, 5, 718(2018).
[11] P G Kwiat, K Mattle, H Weinfurter et al. New high-intensity source of polarization- entangled photon pairs. Phys Rev Lett, 75, 4337(1995).
[12] O Gazzano, S Michaelis de Vasconecellos, C Arnold et al. Bright solid-state sources of indistinguishable single photons. Nat Commun, 4, 1425(2013).
[13] Y M He, Y He, Y J Wei et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol, 8, 213(2013).
[14] C Santori, D Fattal, J Vuckovic et al. Indistinguishable photons from a single-photon device. Nature, 419, 594(2002).
[15] H Wang, Y He, Y H Li et al. High-efficiency multiphoton boson sampling. Nat Photon, 11, 361(2017).
[16] J C Loredo, M A Broome, P Hilaire et al. Boson sampling with single-photon fock states from a bright solid-state source. Phys Rev Lett, 118, 130503(2017).
[17] F Jelezko, J Wrachtrup. Single defect centres in diamond: A review. Phys Status Solidi A, 203, 3207(2006).
[18] A J Morfa, B C Gibson, M Karg et al. Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett, 12, 949(2012).
[19] A Lohrmann, B C Johnson, J C McCallum et al. A review on single photon sources in silicon carbide. Rep Prog Phys, 80, 034502(2017).
[20] J Wang, Y Zhou et al. Efficient generation of an array of single silicon-vacancy defects in silicon carbide. Phys Rev Appl, 7, 064021(2017).
[21] M Widmann, S Y Lee, T Rendler et al. Coherent control of single spins in silicon carbide at room temperature. Nat Mater, 14, 164(2015).
[22] F Fuchs, B Stender, M Trupke et al. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat Commun, 6, 7578(2015).
[23] B Lienhard, T Schröder, S Mouradian et al. Bright and photostable single-photon emitter in silicon carbide. Optica, 3, 768(2016).
[24] M Radulaski, M Widmann, M Niethammer et al. Scalable quantum photonics with single color centers in silicon carbide. Nano Lett, 17, 1782(2017).
[25] D J Christle, A L Falk, P Andrich et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat Mater, 14, 160(2015).
[26] A L Falk, B B Buckley, G Calusine et al. Polytype control of spin qubits in silicon carbide. Nat Commun, 4, 1819(2013).
[27] D J Christle, P V Klimov, F Charles et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys Rev X, 7, 021046(2017).
[28] S Castelletto, B C Johnson, C Zachreson et al. Room temperature quantum emission from cubic silicon carbide nanoparticles. ACS Nano, 8, 7938(2014).
[29] S Castelletto, B Johnson, V Ivády et al. A silicon carbide room-temperature single-photon source. Nat Mater, 13, 151(2014).
[30] J Wang, Y Zhou, Z Wang et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat Commun, 9, 4106(2018).
[31] E Neu, D Steinmetz, J Riedrich-Möller et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys, 13, 025012(2011).
[32] M Kianinia, B Regan, S Abdulkader et al. Robust solid-state quantum system operating at 800 K. ACS Photon, 4, 768(2017).
[33] M Radulaski, T M Babinec, K Mueller et al. Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes. ACS Photon, 2, 14(2015).
[34] A W Schell, T Neumer, Q Shi et al. Laser-written parabolic micro-antennas for efficient photon collection. Appl Phys Lett, 105, 231117(2014).
[35] N H Wan, B J Shields, D Kim et al. Efficient extraction of light from a nitrogen-vacancy center in a diamond parabolic reflector. Nano Lett, 18, 2787(2018).
[36] J T Choy, I Bulu, B J Hausmann et al. Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings. Appl Phys Lett, 103, 161101(2013).
[37] L Li, E H Chen, J Zheng et al. Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett, 15, 1493(2015).
[38] N Livneh, M G Harats, S Yochelis et al. Efficient collection of light from colloidal quantum dots with a hybrid metal–dielectric nanoantenna. ACS Photon, 2, 1669(2015).
[39] A Lohrmann, N Iwamoto, Z Bodrog et al. Single-photon emitting diode in silicon carbide. Nat Commun, 6, 7783(2015).
[40] S Sato, T Honda, T Makino et al. Room temperature electrical control of single photon sources at 4H-SiC surface. ACS Photon, 5, 3159(2018).
Get Citation
Copy Citation Text
Qiang Li, Ji-Yang Zhou, Zheng-Hao Liu, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Stable single photon sources in the near C-band range above 400 K[J]. Journal of Semiconductors, 2019, 40(7): 072902
Category: Articles
Received: Apr. 30, 2019
Accepted: --
Published Online: Sep. 18, 2021
The Author Email: