OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 21, Issue 6, 106(2023)

Silicon-Based Zipper Photonic Crystal Cavity Optomechanical System for Accelerometers

TAN Hong-yu and YAO Yuan
Author Affiliations
  • [in Chinese]
  • show less
    References(26)

    [3] [3] Y Xu, L Zhao, Z Jiang, et al. A novel piezoresistive accelerometer with spbs to improve the tradeoff between the sensitivity and the resonant frequency[J]. Sensors (Basel), 2016, 16(2): 210.

    [4] [4] K Hari, S K Verma, I R Praveen Krishna, et al. Out-of-plane dual flexure mems piezoresistive accelerometer with low cross axis sensitivity[J]. Microsystem Technologies, 2017, 24(5): 2437-2444.

    [5] [5] C Jia, Q Mao, G Luo, et al. Novel high-performance piezoresistive shock accelerometer for ultra-high-g measurement utilizing self-support sensing beams[J]. Rev Sci Instrum, 2020, 91(8): 085001.

    [6] [6] O Aydin, T Akin. A bulk-micromachined fully differential mems accelerometer with split interdigitated fingers[J]. IEEE Sensors Journal, 2013, 13(8): 2914-2921.

    [7] [7] H Xu, X Liu, L Yin. A closed-loop σδ interface for a high-q micromechanical capacitive accelerometer with 200 ng/[Hz] input noise density[J]. IEEE Journal of Solid-State Circuits, 2015, 50(9): 2101-2112.

    [8] [8] S Kavitha, R Joseph Daniel, K Sumangala. Design and analysis of mems comb drive capacitive accelerometer for shm and seismic applications[J]. Measurement, 2016, 93: 327-339.

    [9] [9] Wei Xue, J Wang, T Cui. Highly sensitive micromachined tunneling sensors[J]. Optics and Precision Engineering, 2004, 12(5): 491-503.

    [10] [10] V Kumar, X Guo, S Pourkamali. Single-mask field emission based tunable mems tunneling accelerometer[C]. 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), 2015, 755-758.

    [11] [11] B Yang, B Wang, H Yan, et al. Design of a micromachined z-axis tunneling magnetoresistive accelerometer with electrostatic force feedback[J]. Micromachines (Basel), 2019, 10(2): 158.

    [12] [12] B Yang, X Gao, C Li. A novel micromachined z-axis torsional accelerometer based on the tunneling magnetoresistive effect[J]. Micromachines (Basel), 2020, 11(4): 422.

    [13] [13] ZANDI K, BELANGER J A, PETER Y-A. Design and demonstration of an In-plane silicon-on-insulator optical MEMS Fabry-Pérot-based accelerometer integrated with channel waveguides[J]. J Microelectromech S, 2012, 21(6): 1464-70.

    [14] [14] A Stefani, S Andresen, W Yuan, et al. High sensitivity polymer optical fiber-bragg-grating-based accelerometer[J]. IEEE Photonics Technology Letters, 2012, 24(9): 763-765.

    [15] [15] A R Ali. Micro-optical vibrometer/accelerometer using dielectric microspheres[J]. Appl. Opt., 2019, 58(16): 4211-4219.

    [16] [16] J D Teufel, T Donner, M A Castellanos-Beltran, et al. Nanomechanical motion measured with an imprecision below that at the standard quantum limit[J]. Nat Nanotechnol, 2009, 4(12): 820-822.

    [17] [17] Y W Hu, Y F Xiao, Y C Liu, et al. Optomechanical sensing with on-chip microcavities[J]. Frontiers of Physics, 2013, 8(5): 475-490.

    [18] [18] M Aspelmeyer, T J Kippenberg, F Marquardt. Cavity optomechanics[J]. Reviews of Modern Physics, 2014, 86(4): 1391-1452.

    [19] [19] B S Sheard, M B Gray, C M Mow-Lowry, et al. Observation and characterization of an optical spring[J]. Physical Review A, 2004, 69(5): 051801.

    [20] [20] R Riviere, S Deleglise, S Weis, et al. Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state[J]. Physical Review A, 2011, 83(6): 063835.

    [21] [21] R Horodecki, P Horodecki, M Horodecki, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865-942.

    [22] [22] A H Safavi-Naeini, T P Mayer Alegre, J Chan, et al. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 2011, 472(7341): 69-73.

    [25] [25] A Cucinotta, S Selleri, L Vincetti, et al. Holey fiber analysis through the finite-element method[J]. IEEE Photonics Technology Letters, 2002, 14(11): 1530-1532.

    [26] [26] K Saitoh, M Koshiba, S Member. Full-vectorial imaginary distance beam propagation method based on a finite element scheme: application to photonic crystal fibers[J]. IEEE Journal of Quantum Electron, 2002, 38(7): 927-933.

    [29] [29] J Chan, M Eichenfield, R Camacho, et al. Optical and mechanical design of a zipper photonic crystal optomechanical cavity[J]. Optics Express, 2009, 17: 3802.

    Tools

    Get Citation

    Copy Citation Text

    TAN Hong-yu, YAO Yuan. Silicon-Based Zipper Photonic Crystal Cavity Optomechanical System for Accelerometers[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(6): 106

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 2, 2023

    Accepted: --

    Published Online: Feb. 29, 2024

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics