Journal of Quantum Optics, Volume. 30, Issue 2, 20001(2024)

Intuitive Interpretation and Research Progress of Bell Inequality

YOU Shi-xin, YUAN Chen-zhi*, and JIN Rui-bo
Author Affiliations
  • Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
  • show less
    References(59)

    [1] [1] SCHRDINGER E. Discussion of probability relations between separated systems[C].//Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 1935, 31(4):555‒563. DOI: https://doi.org/10.1017/S0305004100013554.

    [6] [6] EVERETT III H. “Relative state” formulation of quantum mechanics[J]. Reviews of Modern Physics, 1957, 29(3):454. DOI: https://doi.org/10.1103/RevModPhys.29.454.

    [7] [7] BYRNE P. The many worlds of Hugh Everett III: Multiple universes, mutual assured destruction, and the meltdown of a nuclear family[M]. New York: Oxford University Press, 2010.

    [8] [8] WALLACE D. The emergent multiverse: Quantum theory according to the Everett interpretation[M]. New York: Oxford University Press, 2012.

    [9] [9] DEWITT B S, GRAHAM N. The many-worlds interpretation of quantum mechanics[M]. Princeton: Princeton University Press, 2016.

    [10] [10] BOHM D. A suggested interpretation of the quantum theory in terms of “hidden” variables. I and II[J]. Physical Review,1952, 85(2):166‒193. DOI: https://doi.org/10.1103/PhysRev.85.166.

    [11] [11] VON NEUMANN J. Mathematical foundations of quantum mechanics[M]. Princeton: Princeton University Press, 1932:421.

    [14] [14] EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete? [J]. Physical Review, 1935, 47(10):777‒780. DOI: https://doi.org/10.1103/PhysRev.47.777.

    [18] [18] BELL J S. On the Einstein Podolsky Rosen paradox[J]. Physics, 1964, 1(3):195‒200.

    [19] [19] CLAUSER J F, HORNE M A, SHIMONY A, et al. Proposed experiment to test local hidden-variable theories[J]. Physical Review Letters, 1969, 23(15):880‒884. DOI: https://doi.org/10.1103/PhysRevLett.23.880.

    [21] [21] KWIAT P, MATTLE K, WEINFURTER H, et al. New high-intensity source of polarization-entangled photon pairs[J]. Physical Review Letters, 1995, 75(24):4337‒4341. DOI: https://doi.org/10.1103/PhysRevLett.75.4337.

    [22] [22] ZHAO Z, CHEN Y A, ZHANG A N, et al. Experimental demonstration of five-photon entanglement and open-destination teleportation[J]. Physics, 2004, 430(6995):54‒58. DOI: 10.1038/nature02643.

    [23] [23] LU C Y, ZHOU X Q, GHNE O, et al. Experimental entanglement of six photons in graph states[J]. Nature Physics, 2007, 3(2):91‒95. DOI: 10.1038/nphys507.

    [24] [24] YAO X C, WANG T X, XU P, et al. Observation of eight-photon entanglement[J]. Nature Photonics, 2012, 6(4):225‒228. DOI: 10.1038/nphoton.2011.354.

    [25] [25] BLATT R, WINELAND D. Entangled states of trapped atomic ions[J]. Nature, 2008, 453(7198):1008. DOI: 10.1038/nature07125.

    [26] [26] LEE K C, SPRAGUE M R, SUSSMAN B J, et al. Entangling macroscopic diamonds at room temperature[J]. Science, 2011, 334(6060):1253‒1256. DOI: 10.1126/science.1211914.

    [27] [27] THUNSTROEM P, MARCO I D, ERIKSSON O. Electronic entanglement in late transition metal oxides[J]. Physical Review Letters, 2012, 109(18):186401. DOI: 10.1103/PhysRevLett.109.186401.

    [28] [28] SHANKAR S, HATRIDGE M, LEGHTAS Z, et al. Autonomously stabilized entanglement between two superconducting quantum bits[J]. Nature, 2013, 504:419‒422. DOI: https://doi.org/10.1038/nature12802.

    [29] [29] BRUBAKER B. How Bell's Theorem proved‘spooky action at a distance’ is real[EB/OL]. Quanta magazine, (2021-07-20)[2023-07-15] http://www.quantamagzine.org/how-bells-theorem-proved-spooky-action-at-a-distance-is-real-202107201.

    [30] [30] LIAO S K, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670):43‒47. DOI: 10.1038/nature23655.

    [31] [31] REN J G, XU P, YONG H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549(7670):70‒73. DOI: 10.1038/nature23675.

    [32] [32] EKERT A K. Quantum cryptography based on Bell's theorem[J]. Physical Review Letters, 1991, 67(6):661. DOI: https://doi.org/10.1103/PhysRevLett.67.661.

    [33] [33] URSIN R, TIEFENBACHER F, SCHMITT-MANDERBACH T, et al. Entanglement-based quantum communication over 144 km[J]. Nature Physics, 2007, 3(7):481‒486. DOI: 10.1038/nphys629.

    [34] [34] NADLINGER D P, DRMOTA P, NICHOL B C, et al. Experimental quantum key distribution certified by Bell's theorem[J]. Nature, 2022, 607(7920):682‒686. DOI: https://doi.org/10.1038/s41586-022-04941-5.

    [35] [35] ZHANG W, VAN LEENT T, REDEKER K, et al. A device-independent quantum key distribution system for distant users[J]. Nature, 2022, 607(7920):687‒691. DOI: https://doi.org/10.1038/s41586-022-04891-y.

    [36] [36] LIU W Z, ZHANG Y Z, ZHEN Y Z, et al. Toward a photonic demonstration of device-independent quantum key distribution[J]. Physical Review Letters, 2022, 129(5):050502. DOI: https://doi.org/10.1103/PhysRevLett.129.050502.

    [37] [37] MACCONE L. A simple proof of Bell's inequality[J]. American Journal of Physics, 2013, 81(11):854‒859. DOI: http://dx.doi.org/10.1119/1.4823600.

    [40] [40] PEARLE P M. Hidden-variable example based upon data rejection[J]. Physical Review D, 1970, 2(8):1418‒1425. DOI: https://doi.org/10.1103/PhysRevD.2.1418.

    [41] [41] BELL J S. Speakable and unspeakable in quantum mechanics: Collected papers on quantum philosophy[M]. Cambridge: Cambridge university press, 2004.

    [42] [42] GERHARDT I, LIU Q, LAMAS-LINARES A, et al. Experimentally faking the violation of Bell's inequalities[J]. Physical Review Letters, 2011, 107(17):170404. DOI: https://doi.org/10.1103/PhysRevLett.107.170404.

    [43] [43] ASPECT A. Closing the door on Einstein and Bohr's quantum debate[J]. Physics, 2015, 8:123. DOI: 10.1103/PhysRevLett.115.250401.

    [44] [44] HANDSTEINER J, FRIEDMAN A, RAUCH D, et al. A cosmic bell test with measurement settings from astronomical sources[J]. Physical Review Letters, 2017, 118:060401. DOI: 10.1103/PhysRevLett.118.060401.

    [45] [45] The BIG Bell Test Collaboration. Challenging local realism with human choices[J]. Nature, 2018, 557:212‒216. DOI: 10.1038/s41586-018-0085-3.

    [46] [46] WHEELER J A. Polyelectrons[J]. Annals of the New York Academy of Sciences, 1946, 48(3):219‒238. DOI: https://doi.org/10.1111/j.1749-6632.1946.tb31764.x.

    [47] [47] WU C S, SHAKNOV I. The angular correlation of scattered annihilation radiation[J]. Physical Review, 1950, 77(1):136. DOI: https://doi.org/10.1103/PhysRev.77.136.

    [48] [48] FREEDMAN S J, CLAUSER J F. Experimental test of local hidden-variable theories[J]. Physical Review Letters, 1972, 28(14):938‒941. DOI: https://doi.org/10.1103/PhysRevLett.28.938.

    [49] [49] The Nobel Committee for Physics. Scientific Background on the Nobel Prize in Physics 2022[EB/OL]. (2022-12-04) [2023-07-15]. https://www.nobelprize.org/uploads/2023/10/advanced-physicsprize2022-4.pdf.

    [50] [50] ASPECT A. Proposed experiment to test the nonseparability of quantum mechanics[J]. Physical Review D, 1976, 14(8):1944‒1951. DOI: https://doi.org/10.1103/PhysRevD.14.1944.

    [51] [51] ZEILINGER A. Testing Bell's inequalities with periodic switching[J]. Physics Letters A, 1986, 118(1):1‒2. DOI: https://doi.org/10.1016/0375-9601(86)90520-7.

    [52] [52] WEIHS G, JENNEWEIN T, SIMON C, et al. Violation of Bell's inequality under strict Einstein locality conditions[J]. Physical Review Letters, 1998, 81(23):5039‒5043. DOI: https://doi.org/10.1103/PhysRevLett.81.5039.

    [53] [53] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(390):575‒579. DOI: 10.1038/37539.

    [54] [54] PAN J W, BOUWMEESTER D, WEINFURTER H, et al. Experimental entanglement swapping: entangling photons that never interacted[J]. Physical Review Letters, 1998, 80(18):3891‒3894. DOI: https://doi.org/10.1103/PhysRevLett.80.3891.

    [55] [55] ROWE M A, KIELPINSKI D, MEYER V, et al. Experimental violation of a Bell's inequality with efficient detection[J]. Nature, 2001, 409(6822):791‒794. DOI: 10.1038/35057215.

    [56] [56] MATSUKEVICH D N, MAUNZ P, MOEHRING D L, et al. Bell inequality violation with two remote atomic qubits[J]. Physical Review Letters, 2008, 100(15):150404. DOI: https://doi.org/10.1103/PhysRevLett.100.150404.

    [57] [57] HENSEN B, BEMIEN H, DREAU A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres[J]. Nature, 2015, 526(7575):682‒686. DOI: 10.1038/nature15759.

    [58] [58] GIUSTINA M, VERSTEEGH MARIJN A M, WENGEROWSKY S, et al. Significant-Loophole-Free test of Bell's theorem with entangled photons[J]. Physical Review Letters, 2005, 115(25):250401. DOI: https://doi.org/10.1103/PhysRevLett.115.250401.

    [59] [59] SHALM L K, MEYERSCOTT E, CHRISTENSEN B G, et al. Strong loophole-free test of local realism[J]. Physical Review Letters, 2015, 115(25):250402. DOI: https://doi.org/10.1103/PhysRevLett.115.250402.

    [60] [60] TE'ENI A, PELED B Y, COHEN E, et al. Multiplicative Bell Inequalities[J]. Physical Review A, 2019, 99(4):040102. DOI: https://doi.org/10.1103/PhysRevA.99.040102.

    [61] [61] YANG M, MENG H X, ZHOU J, et al. Stronger Hardy-type paradox based on the Bell inequality and its experimental test[J]. Physical Review A, 2019, 99(3):032103. DOI: https://doi.org/10.1103/PhysRevA.99.032103.

    [62] [62] ANDO K, VENNIN V. Bipartite temporal Bell inequalities for two-mode squeezed states[J]. Physical Review A, 2020, 102(5):052213. DOI: https://doi.org/10.1103/PhysRevA.102.052213.

    [63] [63] PANERU D, TE'ENI A, PELED B Y, et al. Experimental tests of multiplicative Bell inequalities and the fundamental role of local correlations[J]. Physical Review Research, 2021, 3(1):L012025. DOI: https://doi.org/10.1103/PhysRevResearch.3.L012025.

    [64] [64] FABBRICHESI M, FLOREANINI R, PANIZZO G. Testing Bell inequalities at the LHC with top-quark pairs[J]. Physical Review Letters, 2021, 127(16):161801. DOI: https://doi.org/10.1103/PhysRevLett.127.161801.

    [65] [65] BARR A J. Testing Bell inequalities in Higgs boson decays[J]. Physics Letters B, 2022, 825:136866. DOI: https://doi.org/10.1016/j.physletb.2021.136866.

    [66] [66] AGUILAR-SAAVEDRA J A, BERNAL A, CASAS J A, et al. Testing entanglement and Bell inequalities in H→ ZZ[J]. Physical Review D, 2023, 107(1):016012. DOI: https://doi.org/10.1103/PhysRevD.107.016012.

    [67] [67] STORZ S, SCHR J, KULIKOV A, et al. Loophole-free Bell inequality violation with superconducting circuits[J]. Nature, 2023, 617(7960):265‒270. DOI: https://doi.org/10.1038/s41586-023-05885-0.

    [68] [68] JIN R B, SHIMIZU R, KANEDA F, et al. Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source[J]. Physical Review A, 2013, 88(1):012324. DOI: https://doi.org/10.1103/PhysRevA.88.012324.

    [69] [69] JIN R B, SHIMIZU R, WAKUI K, et al. Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength[J]. Optics Express, 2014, 22(10):11498‒11507. DOI: 10.1364/OE.22.011498

    [70] [70] ZHANG Z, YUAN C, SHEN S, et al. High-performance quantum entanglement generation via cascaded second-order nonlinear processes[J]. npj Quantum Information, 2021, 7(1):123. DOI: https://doi.org/10.1038/s41534-021-00462-7.

    [71] [71] CAI N, CAI W H, WANG S, et al. Broadband-laser-diode pumped periodically poled potassium titanyl phosphate-Sagnac polarization-entangled photon source[J]. JOSA B, 2022, 39(1):77‒82. DOI: 10.1364/JOSAB.437808.

    Tools

    Get Citation

    Copy Citation Text

    YOU Shi-xin, YUAN Chen-zhi, JIN Rui-bo. Intuitive Interpretation and Research Progress of Bell Inequality[J]. Journal of Quantum Optics, 2024, 30(2): 20001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 31, 2023

    Accepted: Dec. 26, 2024

    Published Online: Dec. 25, 2024

    The Author Email: YUAN Chen-zhi (chenzhi.yuan@wit.edu.cn)

    DOI:10.3788/jqo20243002.0001

    Topics