Acta Optica Sinica, Volume. 41, Issue 1, 0114002(2021)

Research Progress of Single-Frequency Fiber Laser

Changsheng Yang1,3, Xu Cen1, Shanhui Xu1,2,3, and Zhongmin Yang1,2,3,4、*
Author Affiliations
  • 1State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China
  • 2School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
  • 3Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, Guangdong 510640, China
  • 4Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong 510640, China
  • show less
    References(92)

    [2] Hou Y B, Zhang Q, Wang P. Frequency- and intensity-noise suppression in Yb 3+-doped single-frequency fiber laser by a passive optical-feedback loop[J]. Optics Express, 24, 12993-12999(2016).

    [8] Xie Z X, Shi C D, Sheng Q et al. A single-frequency 1064-nmYb 3+-doped fiber laser tandem-pumped at 1018 nm[J]. Optics Communications, 461, 125262(2020).

    [11] Xu S H, Yang Z M, Zhang W N et al. 400 mW ultrashort cavity low-noise single-frequency Yb 3+-doped phosphate fiber laser[J]. Optics Letters, 32, 3708-3710(2011).

    [12] Yang C S, Zhao Q L, Feng Z M et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser[J]. Optics Express, 24, 29794-29799(2016).

    [14] Yang C S, Guan X C, Lin W et al. Efficient 16 μm linearly-polarized single-frequency phosphate glass fiber laser[J]. Optics Express, 25, 29078-29085(2017).

    [15] Guan X C, Yang C S, Qiao T et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm 3+-doped germanate fiber laser at 1950 nm[J]. Optics Express, 26, 6817-6835(2018).

    [21] Gray S, Liu A P, Walton D T et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier[J]. Optics Express, 15, 17044-17050(2007).

    [22] Zhou P, Ma Y X, Wang X L et al. Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm[J]. Optics Letters, 34, 2939-2941(2009).

    [23] Yang C S, Xu S H, Chen D et al. 52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser[J]. Journal of Optics, 18, 055801(2016).

    [25] Gouhier B, Guiraud G, Rota-Rodrigo S et al. 25 W single-frequency, low noise fiber MOPA at 1120 nm[J]. Optics Letters, 43, 308-311(2018).

    [27] Fang Q, Xu Y, Fu S J et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm[J]. Optics Letters, 41, 1829-1832(2016).

    [28] Zhu X S, Shi W, Zong J et al. 976 nm single-frequency distributed Bragg reflector fiber laser[J]. Optics Letters, 37, 4167-4169(2012).

    [29] Huang Z P, Deng H Q, Yang C S et al. Self-injection locked and semiconductor amplified ultrashort cavity single-frequency Yb 3+-doped phosphate fiber laser at 978 nm[J]. Optics Express, 25, 1535-1541(2017).

    [30] Noginov M A, Zhu G H, Fowlkes I. Fiber-coupled random laser. [C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, California. Washington, D.C.: OSA, CThO3(2004).

    [32] Huang L, Wu H S, Li R X et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier[J]. Optics Letters, 42, 1-4(2017).

    [33] Yang C S, Guan X C, Xu S H et al. 210 W kHz-linewidth linearly-polarized all-fiber single-frequency MOPA laser. [C]∥Conference on Lasers and Electro-Optics, San Jose, California. Washington, D.C.: OSA, JTu2A, 164(2018).

    [37] Zhang Y F, Feng Z M, Xu S H et al. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm[J]. Journal of Optics, 17, 125705(2015).

    [38] Leigh M, Shi W, Zong J et al. Compact, single-frequency all-fiber Q-switched laser at 1 μm[J]. Optics Letters, 32, 897-899(2007).

    [39] Zhang Y F, Yang C S, Li C et al. Linearly frequency-modulated pulsed single-frequency fiber laser at 1083 nm[J]. Optics Express, 24, 3162-3167(2016).

    [40] Wang X L, Zhou P, Su R T et al. A 280 W high average power, single-frequency all-fiber nanosecond pulsed laser[J]. Laser Physics, 23, 015101(2013).

    [41] Deng Y, Yao B Q, Ju Y L et al. A diode-pumped 1617 nm single longitudinal mode Er∶YAG laser with intra-cavity etalons[J]. Chinese Physics Letters, 31, 074202(2014).

    [44] Spiegelberg C, Geng J, Hu Y et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003)[J]. Journal of Lightwave Technology, 22, 57-62(2004).

    [47] Bai X L, Sheng Q, Zhang H W et al. High-power all-fiber single-frequency erbium-ytterbium co-doped fiber master oscillator power amplifier[J]. IEEE Photonics Journal, 7, 7103106(2015).

    [48] Creeden D, Pretorius H, Limongelli J et al. Single frequency 1560 m Er∶Yb fiber amplifier with 207 W output power and 50.5% slope efficiency[J]. Proceedings of SPIE, 9728, 97282L(2016).

    [50] Taccheo S, de Geronimo G, Laporta P et al. Intensity noise reduction in a single-frequency ytterbium-codoped erbium laser[J]. Optics Letters, 21, 1747-1749(1996).

    [53] Yang C S, Guan X C, Zhao Q L et al. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 15 μm MOPA laser[J]. Optics Express, 25, 13324-13331(2017).

    [55] Dong J, Hu Y Q, Huang J C et al. Subhertz linewidth laser by locking to a fiber delay line[J]. Applied Optics, 54, 1152-1156(2015).

    [56] Li C, Xu S H, Huang X et al. All-optical frequency and intensity noise suppression of single-frequency fiber laser[J]. Optics Letters, 40, 1964-1967(2015).

    [58] Wu Z S. Research on the noise suppression of 1.5 μm single-frequency fiber laser[D]. Guangzhou: South China University of Technology, 28-36(2019).

    [59] Song Y W, Havstad S A, Starodubov D et al. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG[J]. IEEE Photonics Technology Letters, 13, 1167-1169(2001).

    [61] Zhang Y N, Zhang Y F, Zhao Q L et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser[J]. Optics Express, 24, 26209-26214(2016).

    [63] Petersen E B, Shi W, Nguyen D T et al. Enhanced terahertz source based on external cavity difference-frequency generation using monolithic single-frequency pulsed fiber lasers[J]. Optics Letters, 35, 2170-2172(2010).

    [64] Kaneda Y, Hu Y D, Spiegelberg C et al. Single-frequency, all-fiber Q-switched laser at 1550-nm. [C]∥Advanced Solid-State Photonics, Santa Fe, New Mexico. Washington, D.C.: OSA, PDP6(2004).

    [65] Li K Y, Xu S H, Deng H Q et al. Multi-wavelength, passively Q-switched, single-frequency fiber laser[J]. IEEE Photonics Technology Letters, 31, 1479-1482(2019).

    [66] Shi W, Petersen E B, Leigh M et al. High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band[J]. Optics Express, 17, 8237-8245(2009).

    [68] Lippert E, Rustad G, Nicolas S et al. Fibre-laser-pumped mid-infrared source[J]. Proceedings of SPIE, 5620, 56-62(2004).

    [69] Clément Q, Melkonian J M, Barria J B et al. Tunable optical parametric amplification of a single frequency quantum cascade laser around 8 μm in ZnGeP2. [C]∥Advanced Solid-State Lasers Congress, Paris. Washington, D.C.: OSA, 4046-4054(2013).

    [72] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 29, 1503-1505(2004).

    [73] Geng J H, Wu J F, Jiang S B et al. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm[J]. Optics Letters, 32, 355-357(2007).

    [74] Gapontsev D, Platonov N, Meleshkevich M et al. 20 W single-frequency fiber laser operating at 1.93 μm[C]∥2007 Conference on Lasers and Electro-Optics (CLEO), May 6-11, 2007, Baltimore, MD, USA., 1-2(2007).

    [77] Wu J F, Yao Z D, Zong J et al. Highly efficient high-power thulium-doped germanate glass fiber laser[J]. Optics Letters, 32, 638-640(2007).

    [78] Henderson S W. Suni P J M, Hale C P, et al. Coherent laser radar at 2 μm using solid-state lasers[J]. IEEE Transactions on Geoscience and Remote Sensing, 31, 4-15(1993).

    [79] Yu J R, Trieu B C, Modlin E A et al. 1 J/pulse Q-switched 2 μm solid-state laser[J]. Optics Letters, 31, 462-464(2006).

    [81] Geng J H, Wang Q, Jiang Z et al. Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2 μm[J]. Optics Letters, 36, 2293-2295(2011).

    [83] Wang X, Jin X X, Zhou P et al. 105 W ultra-narrowband nanosecond pulsed laser at 2 μm based on monolithic Tm-doped fiber MOPA[J]. Optics Express, 23, 4233-4241(2015).

    [84] Anquez F, Courtade E, Sivéry A et al. A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm[J]. Optics Express, 18, 22928-22936(2010).

    [86] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [88] Bernier M, Michaud-Belleau V, Levasseur S et al. All-fiber DFB laser operating at 2.8 μm[J]. Optics Letters, 40, 81-84(2015).

    [89] Zhu X S, Zong J, Miller A et al. Single-frequency Ho 3+-doped ZBLAN fiber laser at 1200 nm[J]. Optics Letters, 37, 4185-4187(2012).

    [90] Geng J H, Wang Q, Luo T et al. Single-frequency gain-switched Ho-doped fiber laser[J]. Optics Letters, 37, 3795-3797(2012).

    [92] Li W S, Wu J J, Cai Z P et al. Directly blue diode-pumped green self-Q-switched Ho 3+-doped fluoride all-fiber laser at ~550 nm[J]. Journal of Lightwave Technology, 37, 5727-5732(2019).

    Tools

    Get Citation

    Copy Citation Text

    Changsheng Yang, Xu Cen, Shanhui Xu, Zhongmin Yang. Research Progress of Single-Frequency Fiber Laser[J]. Acta Optica Sinica, 2021, 41(1): 0114002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Aug. 3, 2020

    Accepted: Aug. 31, 2020

    Published Online: Feb. 23, 2021

    The Author Email: Zhongmin Yang (yangzm@scut.edu.cn)

    DOI:10.3788/AOS202141.0114002

    Topics