Chinese Journal of Lasers, Volume. 43, Issue 10, 1001010(2016)
All-Solid-State Doubly Resonant Intracavity Sum-Frequency 578 nm Yellow Laser with KTP Type Ⅱ Phase Matching
[1] [1] Lee H I, Lim Y Y, Kim B J, et al. Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511 nm) for treatment of melasma in Asian patients[J]. Dermatol Surg, 2010, 36(6): 885-893.
[2] [2] Hong F L, Inaba H, Hosaka K, et al. Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm[J]. Opt Express, 2009, 17(3): 1652-1659.
[3] [3] Fukuda M, Kodama K, Yamamoto H, et al. Solid-state laser with newly synthesized pigment[J]. Dyes and Pigments, 2002, 53(1): 67-72.
[4] [4] Zhang S J, Cheng Z X, Zhuo Z, et al. Yellow laser potential at 585 nm of monoclinic GdCa4O(BO3)3Dy crystal[J]. Physica Status Solidi (a), 2000, 181(2): 485-490.
[5] [5] Bowman S R, O′Connor S, Condon N J. Diode pumped yellow dysprosium lasers[J]. Opt Express, 2012, 20(12): 12906-12911.
[6] [6] Pask H M, Piper J A. Efficient all-solid-state yellow laser source producing 1.2 W average power[J]. Opt Lett, 1999, 24(21): 1490-1492.
[7] [7] Lee W K, Park C Y, Yu D H, et al. Generation of 578 nm yellow light over 10 mW by second harmonic generation of an 1156 nm external-cavity diode laser[J]. Opt Express, 2011, 19(18): 17453-17461.
[8] [8] Hosaka K, Inaba H J, Nakajima Y, et al. Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2010, 57(3): 606-612.
[9] [9] Kantola E, Leinonen T, Ranta S, et al. High-efficiency 20 W yellow VECSEL[J]. Opt Express, 2014, 22(6): 6372-6380.
[10] [10] Yang J M, Tan H M, Tian Y B, et al. Generation of a 578 nm yellow laser by the use of sum-frequency mixing in a branched cavity[J]. IEEE Photonics Journal, 2016, 8(1): 1500607.
[11] [11] Yao Jianquan, Xu Degang. All solid state laser and nonlinear optical frequency conversion technology[M]. Beijing: Science Press, 2007.
[12] [12] Shi Shunxiang, Chen Guofu, Zhao Wei, et al. Nonlinear optics[M]. 2nd ed. Xi′an: Xidian University Press, 2012: 139-141.
[13] [13] Liu Q, Fu X, Gong M, et al. Effects of the temperature dependence of absorption coefficients in edge-pumped YbYAG slab lasers[J]. J Opt Soc Am B, 2007, 24(9): 2081-2089.
[14] [14] Taira T, Tulloch W M, Byer R L. Modeling of quasi-three-level lasers and operation of cw YbYAG lasers[J].Appl Opt, 1997, 36(9): 1867-1874.
[15] [15] Singh S , Smith R G, van Uitert L G. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature[J]. Phys Rev B, 1974, 10(6): 2566-2572.
[16] [16] Liu Q, Liu J H, Gong M. Dual-rod, 100 Hz, 388 mJ nanosecond NdYAG oscillator[J]. Appl Opt, 2011, 50(8): 1186-1189.
Get Citation
Copy Citation Text
Yang Jianming, Tan Huiming, Tian Yubing, Yao Wenming, Ma Gangfei, Ju Qiaojun, Zhang Long, Chen Jiansheng, Gao Jing. All-Solid-State Doubly Resonant Intracavity Sum-Frequency 578 nm Yellow Laser with KTP Type Ⅱ Phase Matching[J]. Chinese Journal of Lasers, 2016, 43(10): 1001010
Category: laser devices and laser physics
Received: Jun. 7, 2016
Accepted: --
Published Online: Oct. 12, 2016
The Author Email: Jianming Yang (yjmlaser@163.com)