Journal of Inorganic Materials, Volume. 39, Issue 12, 1325(2024)
[1] PEI J, CAI B, ZHUANG H L et al. Bi2Te3-based applied thermoelectric materials: research advances and new challenges[J]. National Science Review, 7, 1856(2020).
[2] JIA B, HUANG Y, WANG Y et al. Realizing high thermoelectric performance in non-nanostructured n-type PbTe[J]. Energy & Environmental Science, 15, 1920(2022).
[3] HU Z, FU Y, JIANG M et al. Thermal stability of Nb/Mg3SbBi interface[J]. Journal of Inorganic Materials, 38, 931(2023).
[4] HONG M, ZOU J, CHEN Z et al. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance[J]. Advanced Materials, 31, 1807071(2019).
[5] XU S, SHI X L, DARGUSCH M et al. Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications[J]. Progress in Materials Science, 100840(2021).
[6] JIN H, LI J, IOCOZZIA J et al. Hybride organisch- anorganische thermoelektrische materialien und baueinheiten[J]. Angewandte Chemie International Edition, 131, 15348(2019).
[7] ZHANG L, SHI X L, YANG Y L et al. Flexible thermoelectric materials and devices: from materials to applications[J]. Materials Today, 62(2021).
[8] BURTON M, HOWELLS G, ATOYO J et al. Printed thermoelectrics[J]. Advanced Materials, 34, 2108183(2022).
[9] LIN Z, HOLLAR C, KANG J S et al. A solution processable high- performance thermoelectric copper selenide thin film[J]. Advanced Materials, 29, 1606662(2017).
[10] XU Y, WU B, HOU C et al. High thermoelectric performance in Ti3C2T
[11] NEWBROOK D W, RICHARDS S P, GREENACRE V K et al. Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generators[J]. ACS Applied Energy Materials, 3, 5840(2020).
[12] ZHENG Z H, SHI X L, AO D W et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film[J]. Nature Sustainability, 6, 180(2022).
[13] SHI J, WU X, GENG X et al. Anisotropy engineering in solution- derived nanostructured Bi2Te3 thin films for high-performance flexible thermoelectric devices[J]. Chemical Engineering Journal, 141450(2023).
[15] ZENG M, DU Y, JIANG Q et al. High-throughput printing of combinatorial materials from aerosols[J]. Nature, 617, 292(2023).
[16] ZHANG D, LIM X J G, LI X et al. 3D-Printed porous thermoelectrics for
[17] BERETTA D, BARKER A J, MAQUEIRA-ALBO I et al. Thermoelectric properties of highly conductive poly(3,4- ethylenedioxythiophene) polystyrene sulfonate printed thin films[J]. ACS Applied Materials & Interfaces, 9, 18151(2017).
[18] JING J, CHOPPLET L, BATTAGLINI N et al. The role of substrates and electrodes in inkjet-printed PEDOT: PSS thermoelectric generators[J]. Journal of Materials Chemistry C, 12, 6185(2024).
[19] JUNTUNEN T, JUSSILA H, RUOHO M et al. Inkjet printed large-area flexible few-layer graphene thermoelectrics[J]. Advanced Functional Materials, 28, 1800480(2018).
[20] FERHAT S, DOMAIN C, VIDAL J. Flexible thermoelectric device based on TiS2HA
[21] HORIKE S, FUKUSHIMA T, SAITO T et al. Highly stable n-type thermoelectric materials fabricated
[22] DU J, ZHANG B, JIANG M et al. Inkjet printing flexible thermoelectric devices using metal chalcogenide nanowires[J]. Advanced Functional Materials, 33, 2213564(2023).
[23] LU Z, LAYANI M, ZHAO X et al. Fabrication of flexible thermoelectric thin film devices by inkjet printing[J]. Small, 10, 3551(2014).
[24] CHEN B, DAS S R, ZHENG W et al. Inkjet printing of single- crystalline Bi2Te3 thermoelectric nanowire networks[J]. Advanced Electronic Materials, 3, 1600524(2017).
[27] LIU Y, ZHANG Q, HUANG A et al. Fully inkjet-printed Ag2Se flexible thermoelectric devices for sustainable power generation[J]. Nature Communications, 15, 2141(2024).
[28] WANG S, JIANG M, WANG L et al. n-Type Pb-free AgBiSe2 based thermoelectric materials with stable cubic phase structure[J]. Journal of Inorganic Materials, 38, 807(2023).
[29] LI L, ZHAI W, WANG C et al. Maximizing phonon scattering efficiency by Cu2Se alloying in AgCuTe thermoelectric materials[J]. Journal of Materials Chemistry A, 10, 6701(2022).
[30] WEI T, QIU P, ZHAO K et al. Ag2Q-Based (Q = S, Se, Te) silver chalcogenide thermoelectric materials[J]. Advanced Materials, 35, 2110236(2023).
[31] WU R, LI Z, LI Y et al. Synergistic optimization of thermoelectric performance in p-type Ag2Te through Cu substitution[J]. Journal of Materiomics, 5, 489(2019).
[32] LIU W, YANG L, CHEN Z et al. Promising and eco-friendly Cu2X-based thermoelectric materials: progress and applications[J]. Advanced Materials, 32, 1905703(2020).
[33] DENG S, JIANG X, CHEN L et al. Ultralow thermal conductivity and high thermoelectric performance in AgCuTe1-
[34] JIANG J, ZHU H, NIU Y et al. Achieving high room-temperature thermoelectric performance in cubic AgCuTe[J]. Journal of Materials Chemistry A, 8, 4790(2020).
[35] NIU Y, LI S, MAO J et al. Suppressed phase transition and enhanced thermoelectric performance in iodine-doped AgCuTe[J]. Nano Energy, 105297(2020).
[37] LI J, LYU J, YANG W et al. The remarkable role of indium in synergistically optimizing carrier concentration and phase distribution of AgCuTe-based materials[J]. Small, 20, 2311340(2024).
[38] LYU J, LI J, YANG W et al. Enhancing thermoelectric performance in GeTe through Ge enrichment regulation and AgCuTe alloying[J]. Chemical Engineering Journal, 149695(2024).
[39] MA Z, XU T, LI W et al. High thermoelectric performance SnTe with a segregated and percolated structure[J]. ACS Applied Materials & Interfaces, 14, 9192(2022).
[40] ROYCHOWDHURY S, JANA M K, PAN J et al. Soft phonon modes leading to ultralow thermal conductivity and high thermoelectric performance in AgCuTe[J]. Angewandte Chemie International Edition, 57, 4043(2018).
[41] LUAN X, LI J, WU S et al. A nanoscale perspective of the coexistence of multidimensional defects in the AgCuTe system[J]. Nano Energy, 109505(2024).
[42] ZENG M, ZAVANELLI D, CHEN J et al. Printing thermoelectric inks toward next-generation energy and thermal devices[J]. Chemical Society Reviews, 51, 485(2022).
Get Citation
Copy Citation Text
Botao ZHANG, Tingting SUN, Lianjun WANG, Wan JIANG.
Category:
Received: Apr. 1, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: Tingting SUN (Tingtingsun@dhu.edu.cn), Lianjun WANG (wanglj@dhu.edu.cn)