NUCLEAR TECHNIQUES, Volume. 47, Issue 11, 110603(2024)

Characteristics of reactivity insertion accident of heat pipe reactors using different thermoelectric conversion systems

Pan WU1, Yu ZHU1, Zeyu OUYANG1, Jianqiang SHAN1、*, and Xiao YAN2
Author Affiliations
  • 1School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
  • 2Huaneng Shandong ShidaoBay Nuclear Power Plant, Rongcheng264312, China
  • show less
    Figures & Tables(13)
    Schematic diagram of open air Brayton cycle model
    Structural diagram of SBL-30 system at Sandia laboratory[15]
    Calculated and experimental result comparisons of SBL-30 system (a) Temperature prediction vs. experimental data, (b) Pressure prediction vs. experimental data, (c) Flow prediction vs. experimental data
    Diagram of core arrangement and fuel structure of SAIRS-C heat pipe reactor(a) Reactor configuration of SAIRS-C, (b) UN fuel structure of SAIRS-C
    Comparisons of reactor power (a) and average temperature (b) for different thermoelectric conversion systems
    Variation of hot end temperature (a), system output power and conversion efficiency (b) for semiconductor thermoelectric conversion system
    Variations of hot end temperature (a), system output power and conversion efficiency (b) for stirling thermoelectric conversion system
    Parameter variations of open Brayton systems under reactivity insertion accidents (a) Temperature of turbine Inlet and outlet, (b) Output power and conversion efficiency
    Normalized comparison of output power and efficiency variations of different thermoelectric conversion systems(a) Output power, (b) Steady-state efficiency
    • Table 1. Key parameters of SAIRS-C heat pipe reactor

      View table
      View in Article

      Table 1. Key parameters of SAIRS-C heat pipe reactor

      参数名称

      Parameter name

      数值

      Value

      参数名称

      Parameter name

      数值

      Value

      堆芯高度Core height / m0.42热管数量Number of heat pipes60
      燃料棒数数目Number of fuel rods180工作流体Working fluid钠Na
      燃料芯块密度Fuel core block density / kg∙m-312 710热管材料Heat pipe materialSS316
      燃料芯块外径Fuel core block outer diameter / mm13.9热管外径Heat pipe outer diameter / Dhpw∙mm-115.0
      燃料包壳外径Fuel cladding outer diameter / mm15.0热管壁厚Heat pipe wall thickness / dwall∙mm-10.4
      氦气隙厚度Helium gap thickness / mm0.15液环厚度Liquid ring thickness / dliquid∙mm-10.6

      气隙换热系数

      Air gap heat transfer coefficient / W∙K-1∙m-2

      5 800.0

      隔热层壁厚

      Wall thickness of insulation layer / cm

      0.27
      额定热功率Rated thermal power / kW500.0吸液芯孔隙度Suction core porosity / ε0.69
      BeO控制棒数目Number of BeO control rods27蒸发段长度Evaporation section length / Lhpe∙m-10.42
      反射层半径Reflective layer radius / cm24.0绝热段长度Length of adiabatic section / Lhpa∙m-11.84

      六角形活性区半径

      Hexagonal active zone radius / cm

      14.94

      冷凝段长度

      Length of condensing section / Lhpc∙m-1

      1.23

      基体温度反应性系数

      Substrate temperature reactivity coefficient / $∙K-1

      -0.001

      吸液芯厚度

      Thickness of liquid absorption core / dwick∙mm-1

      0.2

      燃料温度反应性系数

      Fuel temperature reactivity coefficient / $∙K-1

      -0.000 8

      冷凝段换热系数

      Heat transfer coefficient of condensing section / hhpc∙(W∙K-1∙m-2)-1

      2 150

      与环境换热系数

      Heat transfer coefficient with environment

      / henvir∙(W∙K-1∙m-2)-1

      100

      与热管换热系数

      Heat transfer coefficient with heat pipe

      / hfhp∙(W∙K-1∙m-2)-1

      7 000.0
    • Table 2. Key parameters of semiconductor thermoelectric conversion system

      View table
      View in Article

      Table 2. Key parameters of semiconductor thermoelectric conversion system

      参数

      Parameters

      稳态值

      Steady state value

      参数

      Parameters

      稳态值

      Steady state value

      发电模块数量Number of power generateon modules / NTE20 000

      外部负载电阻External load resistance

      / Rload∙Ω-1

      12.7×10-3

      Seebeck效应系数Seebeck effect factor

      / α∙(V∙K-1)-1

      5.01×10-4冷热端等效热导Equivalent thermal conduct-ivity at the hot and cold ends / KTE∙(W∙K-1)-10.027 6
      模块内部电阻Module internal resistance / RPN∙Ω-113.553×10-3冷热端换热面积Hot and cold end heat exchange area / Ac∙m-23.477
    • Table 3. Key parameters of stirling and thermoelectric conversion systems

      View table
      View in Article

      Table 3. Key parameters of stirling and thermoelectric conversion systems

      参数

      Parameters

      稳态值

      Steady state value

      参数

      Parameters

      稳态值

      Steady state value

      加热腔温度

      Heating chamber temperat-ure / K

      1 065.6

      冷凝腔温度

      Condensation chamber temperature / K

      300.0

      总输出功率

      Total output power / kW

      163.5

      运行平均压力

      Operating average pressure / MPa

      4.13

      系统效率

      System efficiency / %

      43.1

      运行频率

      Operating frequency / Hz

      41.72
    • Table 4. Key parameters of an open Brayton thermoelectric conversion system

      View table
      View in Article

      Table 4. Key parameters of an open Brayton thermoelectric conversion system

      参数

      Parameters

      稳态值

      Steady state value

      参数

      Parameters

      稳态值

      Steady state value

      压缩机入口压力

      Compressor inlet pressure / MPa

      0.098 3

      压缩机出口压力

      Compressor outlet pressure / MPa

      0.485 4

      压缩机入口温度

      Compressor inlet temperature / K

      288.15

      压缩机出口温度

      Compressor outlet temperature / K

      482.97

      气轮机入口压力

      Gas turbine inlet pressure / MPa

      0.484 4

      气轮机出口压力

      Gas turbine outlet pressure / MPa

      0.106 1

      气轮机入口温度

      Gas turbine inlet temperature / K

      846.57

      气轮机出口温度

      Gas turbine outlet temperature / K

      599.67

      输出功率

      Output power / kW

      88.1

      系统效率

      System efficiency / %

      18.9
    Tools

    Get Citation

    Copy Citation Text

    Pan WU, Yu ZHU, Zeyu OUYANG, Jianqiang SHAN, Xiao YAN. Characteristics of reactivity insertion accident of heat pipe reactors using different thermoelectric conversion systems[J]. NUCLEAR TECHNIQUES, 2024, 47(11): 110603

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: NUCLEAR ENERGY SCIENCE AND ENGINEERING

    Received: Mar. 12, 2024

    Accepted: --

    Published Online: Jan. 2, 2025

    The Author Email: Jianqiang SHAN (SHANJianqiang)

    DOI:10.11889/j.0253-3219.2024.hjs.47.110603

    Topics