Infrared and Laser Engineering, Volume. 50, Issue 12, 20210790(2021)
Progress and prospect of microwave coincidence imaging(Invited)
[1] Ausherman D A, Kozma A, Walker J L, et al. Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 20, 363-400(1984).
[2] Nan Y J, Huang X J, Guo Y J. Generalized continuous wave synthetic aperture radar for high resolution and wide swath remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 7217-7229(2018).
[3] Zhang L, Qiao Z J, Xing M D, et al. High-resolution ISAR imaging by exploiting sparse apertures[J]. IEEE Transactions on Antennas and Propagation, 60, 997-1008(2012).
[4] Yang J Y. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 8, 669-693(2019).
[5] Liu W T, Sun S, Hu H K, et al. Progress and prospect for ghost imaging of moving objects[J]. Laser and Optoelectronics Progress, 58, 3-16(2021).
[6] [6] Guo Y Y, Wang D J, He X Z, et al. Superresolution imaging method based on rom radiation radar array[C]2012 IEEE International Conference on Imaging Systems Techniques Proceedings, Manchester, 2012: 16.
[7] Guo Y Y, He X Z, Wang D J. A novel super-resolution imaging method based on stochastic radiation radar array[J]. Measurement Science and Technology, 24, 074013(2013).
[8] [8] He X Z. The infmation processing methods simulations in microwave staring crelated imaging[D]. Hefei: University of Science Technology of China, 2013. (in Chinese)
[9] [9] Li D Z. Radar coincidence imaging technique research[D]. Changsha: National University of Defense Technology, 2014. (in Chinese)
[10] [10] Shao Z L. Design on spatialtempal rom radiation field f compressed sensing based microwave imaging radar[D]. Xi’an: Xidian University, 2014. (in Chinese)
[11] [11] Xu R. Study on new systems techniques f improving radar imaging perfmances[D]. Xi’an: Xidian University, 2015. (in Chinese)
[12] Chen J P, Zhu W G, Zhang G. A new method of microwave relating imaging[J]. Journal of Naval Aeronautical and Astronautical University, 27, 196-198(2012).
[13] Shao P, Xu R, Li H L, et al. The research on bjorck-schmidt orthogonalization for microwave staring imaging[J]. Journal of Signal Processing, 30, 450-456(2014).
[14] Zhu S T, Zhang A X, Xu Z, et al. Radar coincidence imaging with random microwave source[J]. IEEE Antennas Wireless Propagation Letters, 14, 1239-1242(2015).
[15] Cheng Y Q, Zhou X L, Xu X W, et al. Radar coincidence imaging with stochastic frequency modulated array[J]. IEEE Journal of Selected Topics in Signal Processing, 8, 513-524(2016).
[16] [16] Xu X W. Research on radar coincidence imaging with array position err[D]. Changsha: National University of Defense Technology, 2015. (in Chinese)
[17] [17] Zhou X L. They methods of sparsitybased microwave coincidence imaging[D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
[18] [18] Zha G F. Microwave coincidence imaging technique research f moving target[D]. Changsha: National University of Defense Technology, 2016. (in Chinese)
[19] Zhu S T, He Y C, Chen X M, et al. Resolution threshold analysis of the microwave radar coincidence imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 2232-2243(2020).
[20] [20] Wang T Y. Research on distributed radar sparse imaging technologies[D]. Hefei: University of Science Technology of China, 2015. (in Chinese)
[21] [21] Kay S M. Fundamentals of Statistical Signal Processing: Estimation They[M]. Englewood: Prentice Hall, 1993.
[22] [22] Albert A. Regress the MoePenrose Pseudoinverse[M]. New Yk: Academic Press, 1972.
[23] [23] Golub G H, Van Loan C F. Matrix Computations[M]. 3rd ed. Baltime: Johns Hopkins University Press, 1996.
[24] [24] Yang J G. Research on sparsitydriven regularization radar imaging they method[D]. Changsha: National University of Defense Technology, 2014. (in Chinese)
[25] Phillips D L. A technique for the numerical solution of certain integral equations of the first kind[J]. Journal of the Association for Computing Machinery, 9, 84-97(1962).
[26] Tikhonov A N. Solution of incorrectly formulated problems and the regularization method[J]. Soviet Mathematics-Doklady, 4, 1035-1038(1963).
[27] Potter L C, Chiang D, Carriere R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas Propagation, 32, 1058-1067(1995).
[28] Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 24, 118-121(2007).
[29] Donoho D L. For most large underdetermined systems of linear equations, the minimal L1 norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 59, 797-829(2006).
[30] Candès E J, Wakin M B. An introduction to compressive sampling: a sensing/sampling paradigm that goes against the common knowledge in data acquisition[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).
[31] Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit[J]. SIAM Review, 43, 129-159(2001).
[32] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 53, 4655-4666(2007).
[33] Wipf D P, Rao B D. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 52, 2153-2164(2004).
[34] [34] Guo Y, Ma Y, Wang D. A novel microwave staring imaging method based on shttime integral stochastic radiation fields[C]2013 IEEE International Conference on Imaging Systems Techniques, 2013: 425430.
[35] [35] Ma Y P. Preliminary research on microwave staring crelated imaging based on tempalspatial stochastic radiation fields[D]. Hefei: University of Science Technology of China, 2013. (in Chinese)
[36] Xu X W, Cheng Y Q, Qin Y L, et al. Analysis of array position error in radar coincidence imaging[J]. Modern Radar, 38, 32-37(2016).
[37] [37] Xu X W, Zhou X L, Cheng Y Q, et al. Radar coincidence imaging with array position err[C]2015 IEEE International Conference on Signal Processing, Communications Computing (ICSPCC 2015), 2015: 119122.
[38] [38] Yi M L. Study on compressed sensing algithm f microwave staring imaging[D]. Xi’an: Xidian University, 2014. (in Chinese)
[39] Zhou X, Wang H, Cheng Y, et al. Sparse auto-calibration for radar coincidence imaging with gain-phase error[J]. Sensors, 15, 27611-27624(2015).
[40] Zhou X, Wang H, Cheng Y, et al. Radar coincidence imaging with phase error using Bayesian hierarchical prior modeling[J]. Journal of Electronic Imaging, 25, 013018(2016).
[41] Zhou X, Wang H, Cheng Y, et al. An ExCoV-based method for joint radar coincidence imaging and gain-phase error calibration[J]. Mathematical Problems in Engineering, 8, 513-524(2016).
[42] [42] Zheng Y. Array selfcalibration f MIMO radar with gainphase err[D]. Xi’an: Xidian University, 2015. (in Chinese)
[43] [43] Zhou X, Wang H, Cheng Y, et al. Offgrid radar coincidence imaging based on block sparse Bayesian learning[C]2015 IEEE Wkshop on Signal Processing Systems (SiPS), 2015: 440443.
[44] Li D, Li X, Cheng Y, et al. Radar coincidence imaging under grid mismatch[J]. ISRN Signal Processing, 987803, 1-8(2014).
[45] [45] Luo C S. Research on microwave crelated sparse imaging of moving target[D]. Hefei: University of Science Technology of China, 2016. (in Chinese)
[46] [46] Wang G C. Research on microwave staring crelated imaging of lowrank large scene[D]. Hefei: University of Science Technology of China, 2018. (in Chinese)
[47] [47] Meng Q Q. The research on infmation processing in high resolution microwave staring crelated imaging[D]. Hefei: University of Science Technology of China, 2016. (in Chinese)
[48] Cao K C, Cheng Y Q, Liu K, et al. Off-grid microwave coincidence imaging based on directional grid fission[J]. IEEE Antennas Wireless Propagation Letters, 19, 2497-2501(2020).
[49] [49] Cao K C, Cheng Y Q, Liu K, et al. Reweighteddynamicgridbased microwave coincidence imaging with grid mismatch[JOL]. IEEE Transactions on Geoscience Remote Sensing(20210615)https:ieeexple.ieee.gdocument9455128auths#auths.
[50] [50] Zhang H L. Research on sparse reconstruction technology f microwave staring crelated imaging of moving target[D]. Hefei: University of Science Technology of China, 2015. (in Chinese)
[51] Li D Z, Li X, Cheng Y Q, et al. Radar coincidence imaging in the presence of target-motion-induced error[J]. Journal of Electronic Imaging, 23, 023014(2014).
[52] Li D Z, Li X, Qin Y L, et al. Radar coincidence imaging: an instantaneous imaging technique with stochastic signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 52, 2261-2277(2014).
[53] [53] Yu H. Research on sparse imaging algithms f crelated imaging systems[D]. Hefei: University of Science Technology of China, 2014. (in Chinese)
[54] [54] Yang H T, Wang K Z, Yuan B, et al. Microwave staring imaging based on range pulse compression azimuth wavefront modulation[C]10th European Conference on Synthetic Aperture Radar (EUSAR 2014), 2014: 14.
[55] Yuan Y, Li C R, Li X H, et al. Sensitivity analysis on radiant performance of microwave intensity correlation image[J]. Remote Sensing Technology and Application, 1, 155-162(2015).
[56] Zhou X, Wang H, Cheng Y, et al. Radar coincidence imaging for off-grid target using frequency-hopping waveforms[J]. International Journal of Antennas and Propagation, 2016, 1-16(2016).
[57] Zhou X L, Wang H Q, Cheng Y Q, et al. Radar coincidence imaging by exploiting the continuity of extended target[J]. IET Radar, Sonar & Navigation, 11, 60-69(2017).
[58] Zhou X, Wang H, Cheng Y, et al. Off-grid radar coincidence imaging based on variational sparse Bayesian learning[J]. Mathematical Problems in Engineering, 2016, 1782178(2016).
[59] [59] Cao K C, Cheng Y Q, Liu K, et al. Coherentdetecting incoherentmodulating microwave coincidence imaging with offgrid errs[JOL]. IEEE Geoscience Remote Sensing Letters(20211113)https:ieeexple.ieee.gdocument9612163.
[60] [60] Dai Q. Research on radar coincidence imaging technology in low SNR[D]. Changsha: National University of Defense Technology, 2014. (in Chinese)
[61] [61] Cao K C. Research on radar coincidence imaging with model mismatch[D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
[62] [62] Yuan T Z. Research on radar imaging using electromagic vtex wave[D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
[63] [63] Liu K. Study on the they method of electromagic vtex imaging[D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
[64] [64] Laska J N, Wakin M B, Duarte M F, et al. A new compressive imaging camera architecture using opticaldomain compression[C]Conference on Computational Imaging IV, 2006: 606509.
[65] [65] Hunt J D. Metamaterials f computational imaging[D]. Durham: Duke University, 2013.
[66] Duan P, Wang Y Y, Xu D G, et al. Single pixel imaging with tunable terahertz parametric oscillator[J]. Applied Optics, 55, 3670-3675(2016).
[67] Chen S, Luo C G, Deng B, et al. Study on coding strategies for radar coded-aperture imaging in terahertz band[J]. Journal of Electronic Imaging, 26, 053022(2017).
[68] Gan F J, Luo C G, Liu X Y, et al. Fast terahertz coded-aperture imaging based on convolutional neural network[J]. Applied Sciences-Basel, 10, 2661(2020).
[69] Gan F J, Yuan Z Y, Luo C G, et al. Phaseless terahertz coded-aperture imaging based on deep generative neural network[J]. Remote Sensing, 13, 1-15(2021).
[70] Liu X Y, Wang H Q, Luo C G, et al. Terahertz coded-aperture imaging for moving targets based on incoherent detection array[J]. Applied Optics, 60, 6809-6817(2021).
[71] Luo C G, Deng B, Wang H Q, et al. High-resolution terahertz coded-aperture imaging for near-field three-dimensional target[J]. Applied Optics, 58, 3293-3300(2019).
[72] [72] Yang H T, Zhang L J, Gao Y S, et al. Azimuth wavefront modulation using plasma lens array f microwave staring imaging[C]IEEE Geoscience Remote Sensing Symposium, 2015: 42764279.
[73] Sleasman T, Boyarsk M, Imani M F, et al. Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies[J]. Journal of the Optical Society of America B, 33, 1098-1111(2016).
[74] Hunt J, Gollub J, Driscoll T, et al. Metamaterial microwave holographic imaging system[J]. Journal of the Optical Society of America A, 31, 2109-2119(2014).
[75] Gollub J N, Yurduseven O, Trofatter K P, et al. Large metasurface aperture for millimeter wave computational imaging at the human-scale[J]. Scientific Reports, 7, 42650(2017).
[76] Andreas P, Claire M W, Smith D R, et al. Enhanced resolution stripmap mode using dynamic metasurface antennas[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 3764-3772(2017).
[77] Sleasman T, Boyarsky M, Pulido-Mancera L, et al. Experimental synthetic aperture radar with dynamic metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 65, 6864-6877(2017).
[78] Cui T J, Wu R Y, Wu W, et al. Large-scale transmission-type multifunctional anisotropic coding metasurfaces in millimeter-wave frequencies[J]. Journal of Physics D:Applied Physics, 50, 404002(2017).
[79] Liu S, Cui T J. Concepts, working principles, and applications of coding and programmable metamaterials[J]. Advanced Optical Materials, 5, 1700624(2017).
[80] Wang L, Li L, Li Y, et al. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface[J]. Scientific Reports, 6, 26959(2016).
[81] Li Y B, Li L L, Xu B B, et al. Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging[J]. Scientific Reports, 6, 23731(2016).
[82] Zhao M R, Zhu S T, Huang H L, et al. Frequency-polarization-sensitive metasurface antenna for coincidence imaging[J]. IEEE Antennas and Wireless Propagation Letters, 20, 1274-1278(2021).
[83] Zhao M R, Zhu S T, Huang H L, et al. Frequency-diverse metamaterial cavity antenna for coincidence imaging[J]. IEEE Antennas and Wireless Propagation Letters, 20, 1103-1107(2021).
[84] [84] Chen S. Research on technology of threedimensional terahertz codedaperture imaging[D]. Changsha: National University of Defense Technology, 2018. (in Chinese)
[85] [85] Luo Z L. Research on coded aperture imaging based on programmable metasurface[D]. Changsha: National University of Defense Technology, 2018. (in Chinese)
Get Citation
Copy Citation Text
Yongqiang Cheng, Hongqiang Wang, Kaicheng Cao, Kang Liu, Chenggao Luo. Progress and prospect of microwave coincidence imaging(Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210790
Category: Special issue—Single-pixel imaging
Received: Oct. 28, 2021
Accepted: Nov. 9, 2021
Published Online: Feb. 9, 2022
The Author Email: Hongqiang Wang (oliverwhq@163.net)