Laser & Optoelectronics Progress, Volume. 58, Issue 2, 0215008(2021)
Stereo Matching Algorithm Based on Improved Census Transform and Gradient Fusion
Fig. 2. Census transform windows obtained by different algorithms. (a) Different windows; (b) center pixel value; (c) average value of window pixels; (d) our algorithm
Fig. 3. Disparity images obtained by different algorithms. (a) Left image; (b) right image; (c) true disparity image; (d) CT; (e) impro-CT; (f) GRD; (g) our algorithm
Fig. 4. Aloe disparity images obtained by our algorithm. (a) Left image; (b) right image; (c) real disparity image; (d) disparity image in multi-scale space; (e) final disparity image
Fig. 5. Disparity images obtained by different algorithms under different conditions. (a) Left image; (b) right image; (c) ground truth; (d) CT; (e) Impro-CT; (f) GRD; (g) our algorithm
Fig. 6. Disparity images of the actual scene. (a) Left image; (b) right image; (c) disparity images generated by our algorithm
|
|
|
Get Citation
Copy Citation Text
Hong Xiao, Chuan Tian, Yi Zhang, Bo Wei, Jiaqi Kang. Stereo Matching Algorithm Based on Improved Census Transform and Gradient Fusion[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0215008
Category: Machine Vision
Received: Jul. 1, 2020
Accepted: Jul. 22, 2020
Published Online: Jan. 11, 2021
The Author Email: Chuan Tian (zgtchuan@qq.com)