Journal of Inorganic Materials, Volume. 35, Issue 6, 633(2020)
[2] SUCHANECK G, GERLACH G. Lead-free relaxor ferroelectrics for electrocaloric cooling[C]. Materials Today: Proceedings, 3, 622-631(2016).
[3] CORREIA T, ZHANG Q. Electrocaloric Materials: New Generation of Coolers[J]. Berlin: Spinger, 1-3(2014).
[7] ZHANG G Z, LI Q, GU H M et al. Ferroelectric polymer nanocomposites for room temperature electrocaloric refrigeration[J]. Adv. Mater., 27, 1450-1454(2015).
[11] KLEIN L, APARICIO M, JITIANU A. Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications. 2nd ed[J]. Springer: Switzerland, 667-693(2018).
[12] BAI Y, WEI D, QIAO L J. Control multiple electrocaloric effect peak in Pb(Mg1/3Nb2/3)O3-PbTiO3 by phase composition and crystal orientation[J]. Appl. Phys. Lett, 107(2015).
[13] YE H J, QIAN X S, JEONG D Y et al. Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film[J]. Appl. Phys. Lett, 105(2014).
[14] LI F, CHEN G R, LIU X et al. Type-I pseudo-first-order phase transition induced electrocaloric effect in lead-free Bi0.5Na0.5TiO3- 0.06BaTiO3 ceramics[J]. Appl. Phys. Lett, 110(2017).
[17] ZHANG G Z, WENG L X, HU Z Y et al. Nanoconfinement-induced giant electrocaloric effect in ferroelectric polymer nanowire array integrated with aluminum oxide membrane to exhibit record cooling power density[J]. Adv. Mater., 31(2019).
[18] ZHUO F P, LI Q, GAO J H et al. Coexistence of multiple positive and negative electrocaloric responses in (Pb, La)(Zr, Sn, Ti)O3 single crystal[J]. Appl. Phys. Lett, 108(2016).
[19] KUTNJAK Z, ROŽIČ B, PIRC R. Wiley Encyclopedia of Electrical and Electronics Engineering (John Wiley& Sons)[J], 1-19(2015).
[20] LIU Y, SCOTT J F, DKHIL B. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives[J]. Appl. Phys. Rev, 3(2016).
[23] LIU Y, SCOTT J F, DKHIL B. Some strategies for improving caloric responses with ferroelectrics[J]. APL Mater, 4(2016).
[32] BAI Y, LI J T, QIN S Q et al. Ferroelectric ceramics for high-efficient solid-state refrigeration[J]. Advanced Ceramics, 39, 369-389(2018).
[33] THOMSON W, KELVIN L. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter[J]. Phil. Mag., 5, 4-27(1878).
[34] KOBEKO P, KURTSCHATOV J. Dielektrische eigenschaften der seignettesalzkristalle[J]. Z. Phys., 66, 192-205(1930).
[35] HAUTZENLAUB J F. Electrocaloric and Dielectric Behavior of Potassium Dihydrogen Phosphate[J]. Massachusetts: Massachusetts Institute of Technology Doctoral Dissertation(1943).
[45] PERÄNTIE J, TAILOR H N, HAGBERG J et al. Electrocaloric properties in relaxor ferroelectric (1-
[46] GENG W P, LIU Y, MENG X J. Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature[J]. Adv. Mater., 27(2015).
[47] BAI Y, ZHENG G P, DING K et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film[J]. J. Appl. Phys., 110(2011).
[52] BAI Y, HAN X, ZHENG X C et al. Both high reliability and giant electrocaloric strength in BaTiO3 ceramics[J]. Sci. Rep., 3(2013).
[54] PLAZNIK U, KITANOVSKI A, ROŽIČ B et al. Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device[J]. Appl. Phys. Lett, 106(2015).
[55] CHUKKA R, VANDRANGI S, SHANNIGRAHI S et al. An electrocaloric device demonstrator for solid-state cooling[J]. EPL-Europhys. Lett, 103(2013).
[56] ZHANG T, QIAN X S, GU H M et al. An electrocaloric refrigerator with direct solid to solid regeneration[J]. Appl. Phys. Lett, 110(2017).
[60] Li X Y. Electrocaloric Effect in Relaxor Ferroelectric Materials[J]. Pennsylvania: The Pennsylvania State University Doctoral Dissertation(2013).
[62] SANLIALP M, MOLIN C, SHVARTSMAN V V et al. Modified differential scanning calorimeter for direct electrocaloric measurements[J]. IEEE Trans. Ultrason. Ferroelectrics, 63, 1690-1696(2016).
[64] LI J T, BAI Y, QIN S Q. Direct and indirect characterization of electrocaloric effect in (Na, K)NbO3 based lead-free ceramics[J]. Appl. Phys. Lett, 109(2016).
[65] ZHOU Y Z, LIN Q R, LIU W F et al. Compositional dependence of electrocaloric effect in lead-free (1-
[66] ROSE M C, COHEN R E. Giant electrocaloric effect around
[68] NIE X, YAN S G, CHEN X F et al. Correlation between electrocaloric response and polarization behavior: slim-like and square-like hysteresis loop[J]. Phys. Status Solidi A, 215(2018).
[73] KARAKI T, KATAYAMA T, YOSHIDA K et al. Morphotropic phase boundary slope of (K, Na, Li)NbO3-BaZrO3 binary system adjusted using third component (Bi, Na)TiO3 additive[J]. Jpn. J. Appl. Phys., 52(2013).
[75] CHUKKA R, CHEAH J W, CHEN Z H et al. Enhanced cooling capacities of ferroelectric materials at morphotropic phase boundaries[J]. Appl. Phys. Lett, 98(2011).
[76] ZHANG T D, LI W L, CAO W P et al. Giant electrocaloric effect in PZT bilayer thin films by utilizing the electric field engineering[J]. Appl. Phys. Lett., 108(2016).
[78] GOTTSCHALL T, BENKE D, FRIES M et al. A matter of size and stress: understanding the first-order transition in materials for solid-state refrigeration[J]. Adv. Funct. Mater., 27(2017).
[81] KIM H K, SHI F G. Thickness dependent dielectric strength of a low-permittivity dielectric film[J]. IEEE Trans. Electr. In., 8, 248-252(2001).
[82] CHEN G, ZHAO J W, LI S T et al. Origin of thickness dependent dc electrical breakdown in dielectrics[J]. Appl. Phys. Lett, 100(2012).
[85] MARATHE M, GRÜNEBOHM A, NISHIMATSU T et al. First-principles-based calculation of the electrocaloric effect in BaTiO3: a comparison of direct and indirect methods[J]. Phys. Rev. B, 93(2016).
[86] NOVAK N, PIRC R, KUTNJAK Z. Impact of critical point on piezoelectric and electrocaloric response in barium titanate[J]. Phys. Rev. B, 87(2013).
[87] NISHIMATSU T, BARR J A, BECKMAN S P. Direct molecular dynamics simulation of electrocaloric effect BaTiO3[J]. J. Phys. Soc. Jpn., 82(2013).
[91] YAO Y G, ZHOU C, LYU D C et al. Large piezoelectricity and dielectric permittivity in BaTiO3-
[93] ZHANG X, WU L, GAO S et al. Large electrocaloric effect in Ba(Ti1-
[94] SANLIALP M, LUO Z D, SHVARTSMAN V V et al. Direct measurement of electrocaloric effect in lead-free Ba(Sn
[95] HIROSHI M. Temperature dependences of the electromechanical and electrocaloric properties of Ba(Zr, Ti)O3 and (Ba, Sr)TiO3 ceramics[J]. Jpn. J. Appl. Phys., 56(2017).
[97] LUO Z D, ZHANG D W, YANG L et al. Enhanced electrocaloric effect in lead-free BaTi1-
[98] LIU W F, REN X B. Large piezoelectric effect in Pb-free ceramics[J]. Phys. Rev. Lett., 103(2009).
[100] TSAI C C, CHAO W H, CHU S Y et al. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 lead-free piezoelectric ceramics with high Curie temperature[J]. AIP Advances, 6(2016).
[109] PONOMAREVA I, LISENKOV S. Bridging the macroscopic and atomistic descriptions of the electrocaloric effect[J]. Phys. Rev. Lett., 108(2012).
[112] LE GOUPIL F, BENNETT J, AXELSSON A K et al. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics[J]. Appl. Phys. Lett, 107(2015).
[113] LE GOUPIL F, ALFORD N M. Upper limit of the electrocaloric peak in lead-free ferroelectric relaxor ceramics[J]. APL Mater., 4(2016).
[114] LE GOUPIL F, MCKINNON R, KOVAL V et al. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics[J]. Sci. Rep., 6(2016).
[122] KORUZA J, ROŽIČ B, CORDOYIANNIS G et al. Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics[J]. Appl. Phys. Lett., 106(2015).
[125] WANG X J, WU J G, DKHIL B et al. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics[J]. Appl. Phys. Lett., 110(2017).
[126] KUMAR R, SINGH S. Giant electrocaloric and energy storage performance of [(K0.5Na0.5)NbO3](1-
[128] TAO H, YANG J L, LYU X et al. Electrocaloric behavior and piezoelectric effect in relaxor NaNbO3-based ceramics[J]. J. Am. Ceram. Soc., 102, 2578-2586(2019).
Get Citation
Copy Citation Text
Ying YU, Hongliang DU, Zetian YANG, Li JIN, Shaobo QU.
Category: REVIEW
Received: Jun. 25, 2019
Accepted: --
Published Online: Mar. 2, 2021
The Author Email: Hongliang DU (duhongliang@126.com)