Journal of Inorganic Materials, Volume. 35, Issue 6, 633(2020)

Electrocaloric Effect of Lead-free Bulk Ceramics: Current Status and Challenges

Ying YU1, Hongliang DU1,2、*, Zetian YANG1, Li JIN2, and Shaobo QU1
Author Affiliations
  • 1Department of Basic Sciences, Air Force Engineering University, Xi'an 710051, China
  • 2Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    References(125)

    [2] SUCHANECK G, GERLACH G. Lead-free relaxor ferroelectrics for electrocaloric cooling[C]. Materials Today: Proceedings, 3, 622-631(2016).

    [3] CORREIA T, ZHANG Q. Electrocaloric Materials: New Generation of Coolers[J]. Berlin: Spinger, 1-3(2014).

    [7] ZHANG G Z, LI Q, GU H M et al. Ferroelectric polymer nanocomposites for room temperature electrocaloric refrigeration[J]. Adv. Mater., 27, 1450-1454(2015).

    [11] KLEIN L, APARICIO M, JITIANU A. Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications. 2nd ed[J]. Springer: Switzerland, 667-693(2018).

    [12] BAI Y, WEI D, QIAO L J. Control multiple electrocaloric effect peak in Pb(Mg1/3Nb2/3)O3-PbTiO3 by phase composition and crystal orientation[J]. Appl. Phys. Lett, 107(2015).

    [13] YE H J, QIAN X S, JEONG D Y et al. Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film[J]. Appl. Phys. Lett, 105(2014).

    [14] LI F, CHEN G R, LIU X et al. Type-I pseudo-first-order phase transition induced electrocaloric effect in lead-free Bi0.5Na0.5TiO3- 0.06BaTiO3 ceramics[J]. Appl. Phys. Lett, 110(2017).

    [17] ZHANG G Z, WENG L X, HU Z Y et al. Nanoconfinement-induced giant electrocaloric effect in ferroelectric polymer nanowire array integrated with aluminum oxide membrane to exhibit record cooling power density[J]. Adv. Mater., 31(2019).

    [18] ZHUO F P, LI Q, GAO J H et al. Coexistence of multiple positive and negative electrocaloric responses in (Pb, La)(Zr, Sn, Ti)O3 single crystal[J]. Appl. Phys. Lett, 108(2016).

    [19] KUTNJAK Z, ROŽIČ B, PIRC R. Wiley Encyclopedia of Electrical and Electronics Engineering (John Wiley& Sons)[J], 1-19(2015).

    [20] LIU Y, SCOTT J F, DKHIL B. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives[J]. Appl. Phys. Rev, 3(2016).

    [23] LIU Y, SCOTT J F, DKHIL B. Some strategies for improving caloric responses with ferroelectrics[J]. APL Mater, 4(2016).

    [32] BAI Y, LI J T, QIN S Q et al. Ferroelectric ceramics for high-efficient solid-state refrigeration[J]. Advanced Ceramics, 39, 369-389(2018).

    [33] THOMSON W, KELVIN L. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter[J]. Phil. Mag., 5, 4-27(1878).

    [34] KOBEKO P, KURTSCHATOV J. Dielektrische eigenschaften der seignettesalzkristalle[J]. Z. Phys., 66, 192-205(1930).

    [35] HAUTZENLAUB J F. Electrocaloric and Dielectric Behavior of Potassium Dihydrogen Phosphate[J]. Massachusetts: Massachusetts Institute of Technology Doctoral Dissertation(1943).

    [45] PERÄNTIE J, TAILOR H N, HAGBERG J et al. Electrocaloric properties in relaxor ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 system[J]. J. Appl. Phys., 114(2013).

    [46] GENG W P, LIU Y, MENG X J. Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature[J]. Adv. Mater., 27(2015).

    [47] BAI Y, ZHENG G P, DING K et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film[J]. J. Appl. Phys., 110(2011).

    [52] BAI Y, HAN X, ZHENG X C et al. Both high reliability and giant electrocaloric strength in BaTiO3 ceramics[J]. Sci. Rep., 3(2013).

    [54] PLAZNIK U, KITANOVSKI A, ROŽIČ B et al. Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device[J]. Appl. Phys. Lett, 106(2015).

    [55] CHUKKA R, VANDRANGI S, SHANNIGRAHI S et al. An electrocaloric device demonstrator for solid-state cooling[J]. EPL-Europhys. Lett, 103(2013).

    [56] ZHANG T, QIAN X S, GU H M et al. An electrocaloric refrigerator with direct solid to solid regeneration[J]. Appl. Phys. Lett, 110(2017).

    [60] Li X Y. Electrocaloric Effect in Relaxor Ferroelectric Materials[J]. Pennsylvania: The Pennsylvania State University Doctoral Dissertation(2013).

    [62] SANLIALP M, MOLIN C, SHVARTSMAN V V et al. Modified differential scanning calorimeter for direct electrocaloric measurements[J]. IEEE Trans. Ultrason. Ferroelectrics, 63, 1690-1696(2016).

    [64] LI J T, BAI Y, QIN S Q. Direct and indirect characterization of electrocaloric effect in (Na, K)NbO3 based lead-free ceramics[J]. Appl. Phys. Lett, 109(2016).

    [65] ZHOU Y Z, LIN Q R, LIU W F et al. Compositional dependence of electrocaloric effect in lead-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics[J]. RCS Adv., 6, 14084-14089(2016).

    [66] ROSE M C, COHEN R E. Giant electrocaloric effect around TC[J]. Phys. Rev. Lett., 109(2012).

    [68] NIE X, YAN S G, CHEN X F et al. Correlation between electrocaloric response and polarization behavior: slim-like and square-like hysteresis loop[J]. Phys. Status Solidi A, 215(2018).

    [73] KARAKI T, KATAYAMA T, YOSHIDA K et al. Morphotropic phase boundary slope of (K, Na, Li)NbO3-BaZrO3 binary system adjusted using third component (Bi, Na)TiO3 additive[J]. Jpn. J. Appl. Phys., 52(2013).

    [75] CHUKKA R, CHEAH J W, CHEN Z H et al. Enhanced cooling capacities of ferroelectric materials at morphotropic phase boundaries[J]. Appl. Phys. Lett, 98(2011).

    [76] ZHANG T D, LI W L, CAO W P et al. Giant electrocaloric effect in PZT bilayer thin films by utilizing the electric field engineering[J]. Appl. Phys. Lett., 108(2016).

    [78] GOTTSCHALL T, BENKE D, FRIES M et al. A matter of size and stress: understanding the first-order transition in materials for solid-state refrigeration[J]. Adv. Funct. Mater., 27(2017).

    [81] KIM H K, SHI F G. Thickness dependent dielectric strength of a low-permittivity dielectric film[J]. IEEE Trans. Electr. In., 8, 248-252(2001).

    [82] CHEN G, ZHAO J W, LI S T et al. Origin of thickness dependent dc electrical breakdown in dielectrics[J]. Appl. Phys. Lett, 100(2012).

    [85] MARATHE M, GRÜNEBOHM A, NISHIMATSU T et al. First-principles-based calculation of the electrocaloric effect in BaTiO3: a comparison of direct and indirect methods[J]. Phys. Rev. B, 93(2016).

    [86] NOVAK N, PIRC R, KUTNJAK Z. Impact of critical point on piezoelectric and electrocaloric response in barium titanate[J]. Phys. Rev. B, 87(2013).

    [87] NISHIMATSU T, BARR J A, BECKMAN S P. Direct molecular dynamics simulation of electrocaloric effect BaTiO3[J]. J. Phys. Soc. Jpn., 82(2013).

    [91] YAO Y G, ZHOU C, LYU D C et al. Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: the role of phase coexisting[J]. Europhysics Letters, 98(2012).

    [93] ZHANG X, WU L, GAO S et al. Large electrocaloric effect in Ba(Ti1-xSnx)O3 ceramics over a broad temperature region[J]. AIP Adv., 5(2015).

    [94] SANLIALP M, LUO Z D, SHVARTSMAN V V et al. Direct measurement of electrocaloric effect in lead-free Ba(SnxTi1-x)O3 ceramics[J]. Appl. Phys. Lett, 111(2017).

    [95] HIROSHI M. Temperature dependences of the electromechanical and electrocaloric properties of Ba(Zr, Ti)O3 and (Ba, Sr)TiO3 ceramics[J]. Jpn. J. Appl. Phys., 56(2017).

    [97] LUO Z D, ZHANG D W, YANG L et al. Enhanced electrocaloric effect in lead-free BaTi1-xSnxO3 ceramics near room temperature[J]. Appl. Phys. Lett, 105(2014).

    [98] LIU W F, REN X B. Large piezoelectric effect in Pb-free ceramics[J]. Phys. Rev. Lett., 103(2009).

    [100] TSAI C C, CHAO W H, CHU S Y et al. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 lead-free piezoelectric ceramics with high Curie temperature[J]. AIP Advances, 6(2016).

    [109] PONOMAREVA I, LISENKOV S. Bridging the macroscopic and atomistic descriptions of the electrocaloric effect[J]. Phys. Rev. Lett., 108(2012).

    [112] LE GOUPIL F, BENNETT J, AXELSSON A K et al. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics[J]. Appl. Phys. Lett, 107(2015).

    [113] LE GOUPIL F, ALFORD N M. Upper limit of the electrocaloric peak in lead-free ferroelectric relaxor ceramics[J]. APL Mater., 4(2016).

    [114] LE GOUPIL F, MCKINNON R, KOVAL V et al. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics[J]. Sci. Rep., 6(2016).

    [122] KORUZA J, ROŽIČ B, CORDOYIANNIS G et al. Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics[J]. Appl. Phys. Lett., 106(2015).

    [125] WANG X J, WU J G, DKHIL B et al. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics[J]. Appl. Phys. Lett., 110(2017).

    [126] KUMAR R, SINGH S. Giant electrocaloric and energy storage performance of [(K0.5Na0.5)NbO3](1-x)-(LiSbO3)x nanocrystalline ceramics[J]. Sci. Rep., 8(2018).

    [128] TAO H, YANG J L, LYU X et al. Electrocaloric behavior and piezoelectric effect in relaxor NaNbO3-based ceramics[J]. J. Am. Ceram. Soc., 102, 2578-2586(2019).

    Tools

    Get Citation

    Copy Citation Text

    Ying YU, Hongliang DU, Zetian YANG, Li JIN, Shaobo QU. Electrocaloric Effect of Lead-free Bulk Ceramics: Current Status and Challenges[J]. Journal of Inorganic Materials, 2020, 35(6): 633

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Jun. 25, 2019

    Accepted: --

    Published Online: Mar. 2, 2021

    The Author Email: Hongliang DU (duhongliang@126.com)

    DOI:10.15541/jim20190308

    Topics