Optics and Precision Engineering, Volume. 20, Issue 3, 587(2012)
Modeling and control of piezo-stage using neural networks
[1] [1] LI Q X, WANG D SH, LI Y H. Design of Modern Precision Instruments[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
[2] [2] LI Y M,XU Q S. A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nano manipulation[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2): 265-279.
[3] [3] CHEN L G, ZHANG Y, SUN L N, et al.. Application of multi-objective topology optimization design on the nano-positioning stage[J]. Piezoelectics & Acoustooptics, 2011, 33(2): 228-231. (in Chinese)
[4] [4] POLIT S, DONG J Y. Development of a high-bandwidth XY nanopositioning stage for high-rate micro-/nanomanufacturing[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 724-733.
[5] [5] LI Y M,XU Q S. A novel piezoactuated XY stage with parallel decoupled, and stacked flexure structure for micro-/nanopositioning [J]. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3601-3615.
[7] [7] JEDLICSKA I, WEISS R, WEIGEL R. Linearizing the output characteristic of GMR current sensors through hysteresis modeling[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1728-1734.
[8] [8] TAN X B, IVER R V. Modeling and control of hysteresis[J]. IEEE Transactions on Control Systems, 2009, 29(1): 26-28.
[9] [9] DEVASIA S, ELEFTHERIOU E, MOHEIMANI S O R. A survey of control issues in nanopositioning[J]. IEEE Transactions on Control Systems Technology, 2007, 15(5): 802-823.
[11] [11] TAO G, KOKOTOVIC P V. Adaptive Control of Systems with Actuator and Sensor Nonlinearities[M]. New York: Wiley. 1996.
[12] [12] GE P, JOUANEH M. Modeling hysteresis in piezoceramic actuators[J]. Precision Engineering, 1995, 17(3):211-221.
[13] [13] KRASNOSELSKII M, POKROVSKII A. Systems with Hysteresis[M]. New York: Springer-Verlag, 1994.
[14] [14] JANAIDEH M A, RAKHEJA S, SU CH Y. An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 734-744.
[15] [15] YI J, CHANG S, SHEN Y. Disturbance-observer-based hysteresis compensation for piezoelectric actuators[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(4): 456-464.
[16] [16] MA L W, TAN Y H, ZOU T. A neural-network-based inverse hysteresis model[J]. Control Theory & Application, 2008, 25(5): 823-826. (in Chinese)
[17] [17] ZHANG X L, TAN Y H. Neural network model for the dynamic hysteresis based on the expanded input space[J]. Acta Automatica Sinica, 2009,35(3): 319-323. (in Chinese)
[18] [18] ZHAO X L, TAN Y H, DONG J P. Dynamic modeling of rate-dependent hysteresis in piezoelectric actuators based on expanded input space method[J]. Journal of Mechanical Engineering, 2010, 46(20): 169-174. (in Chinese)
[19] [19] DONG R L, TAN Y H. A neural networks based model for rate-dependent hysteresis for piezoceramic actuators[J]. Sensors and Actuators, 2008, 143: 370-376.
[20] [20] LIU X D, XIU CH B, LI L, et al.. Hysteresis modeling using neural networks[J]. Piezoelectics & Acoustooptics, 2007, 29(1): 106-108. (in Chinese)
[22] [22] TANG J, WANG K W. High authority and nonlinearity issues in active passive hybrid piezoelectric networks for structural damping[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(3): 581-591.
[23] [23] SU C Y, STEPANENKO Y, SVOBODA J, et al.. Robust adaptive control of a class of nonlinear systems with unkown backlash like hysteresis[J]. IEEE Transactions on Automatic Control, 2000, 45(12): 2427-2432.
[24] [24] WEI J D, SUN C T. Constructing hysteresis memory in neural networks[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 2000, 30(4): 601-609.
[25] [25] YAN P F, ZHANG CH SH. Artificial Neural Network and Simulated Evolutionary Computation [M]. 2 nd ed. Beijing: Tsinghua University Press, 2005. (in Chinese)
[26] [26] YUAN Z R. Artificial Neural Networks and Application[M]. Beijing: Tsinghua University Press, 1999. (in Chinese)
[27] [27] ZHANG D, ZHANG Y L, LI X M, et al.. Modeling and control of SECM piezo-stage[J]. Chinese Journal of Scientific Instrument, 2009, 30(12): 2669-2675. (in Chinese)
Get Citation
Copy Citation Text
ZHANG Dong, ZHANG Cheng-jin, WEI Qiang, TIAN Yan-bing, ZHAO Jing-bo, LI Xian-ming. Modeling and control of piezo-stage using neural networks[J]. Optics and Precision Engineering, 2012, 20(3): 587
Category:
Received: Sep. 1, 2011
Accepted: --
Published Online: Apr. 16, 2012
The Author Email: ZHANG Dong (zhangdonggraduate@163.com)