Optics and Precision Engineering, Volume. 20, Issue 3, 587(2012)

Modeling and control of piezo-stage using neural networks

ZHANG Dong1,2、*, ZHANG Cheng-jin3, WEI Qiang2,4, TIAN Yan-bing1, ZHAO Jing-bo1, and LI Xian-ming3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(27)

    [1] [1] LI Q X, WANG D SH, LI Y H. Design of Modern Precision Instruments[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)

    [2] [2] LI Y M,XU Q S. A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nano manipulation[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2): 265-279.

    [3] [3] CHEN L G, ZHANG Y, SUN L N, et al.. Application of multi-objective topology optimization design on the nano-positioning stage[J]. Piezoelectics & Acoustooptics, 2011, 33(2): 228-231. (in Chinese)

    [4] [4] POLIT S, DONG J Y. Development of a high-bandwidth XY nanopositioning stage for high-rate micro-/nanomanufacturing[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 724-733.

    [5] [5] LI Y M,XU Q S. A novel piezoactuated XY stage with parallel decoupled, and stacked flexure structure for micro-/nanopositioning [J]. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3601-3615.

    [7] [7] JEDLICSKA I, WEISS R, WEIGEL R. Linearizing the output characteristic of GMR current sensors through hysteresis modeling[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1728-1734.

    [8] [8] TAN X B, IVER R V. Modeling and control of hysteresis[J]. IEEE Transactions on Control Systems, 2009, 29(1): 26-28.

    [9] [9] DEVASIA S, ELEFTHERIOU E, MOHEIMANI S O R. A survey of control issues in nanopositioning[J]. IEEE Transactions on Control Systems Technology, 2007, 15(5): 802-823.

    [11] [11] TAO G, KOKOTOVIC P V. Adaptive Control of Systems with Actuator and Sensor Nonlinearities[M]. New York: Wiley. 1996.

    [12] [12] GE P, JOUANEH M. Modeling hysteresis in piezoceramic actuators[J]. Precision Engineering, 1995, 17(3):211-221.

    [13] [13] KRASNOSELSKII M, POKROVSKII A. Systems with Hysteresis[M]. New York: Springer-Verlag, 1994.

    [14] [14] JANAIDEH M A, RAKHEJA S, SU CH Y. An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 734-744.

    [15] [15] YI J, CHANG S, SHEN Y. Disturbance-observer-based hysteresis compensation for piezoelectric actuators[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(4): 456-464.

    [16] [16] MA L W, TAN Y H, ZOU T. A neural-network-based inverse hysteresis model[J]. Control Theory & Application, 2008, 25(5): 823-826. (in Chinese)

    [17] [17] ZHANG X L, TAN Y H. Neural network model for the dynamic hysteresis based on the expanded input space[J]. Acta Automatica Sinica, 2009,35(3): 319-323. (in Chinese)

    [18] [18] ZHAO X L, TAN Y H, DONG J P. Dynamic modeling of rate-dependent hysteresis in piezoelectric actuators based on expanded input space method[J]. Journal of Mechanical Engineering, 2010, 46(20): 169-174. (in Chinese)

    [19] [19] DONG R L, TAN Y H. A neural networks based model for rate-dependent hysteresis for piezoceramic actuators[J]. Sensors and Actuators, 2008, 143: 370-376.

    [20] [20] LIU X D, XIU CH B, LI L, et al.. Hysteresis modeling using neural networks[J]. Piezoelectics & Acoustooptics, 2007, 29(1): 106-108. (in Chinese)

    [22] [22] TANG J, WANG K W. High authority and nonlinearity issues in active passive hybrid piezoelectric networks for structural damping[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(3): 581-591.

    [23] [23] SU C Y, STEPANENKO Y, SVOBODA J, et al.. Robust adaptive control of a class of nonlinear systems with unkown backlash like hysteresis[J]. IEEE Transactions on Automatic Control, 2000, 45(12): 2427-2432.

    [24] [24] WEI J D, SUN C T. Constructing hysteresis memory in neural networks[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 2000, 30(4): 601-609.

    [25] [25] YAN P F, ZHANG CH SH. Artificial Neural Network and Simulated Evolutionary Computation [M]. 2 nd ed. Beijing: Tsinghua University Press, 2005. (in Chinese)

    [26] [26] YUAN Z R. Artificial Neural Networks and Application[M]. Beijing: Tsinghua University Press, 1999. (in Chinese)

    [27] [27] ZHANG D, ZHANG Y L, LI X M, et al.. Modeling and control of SECM piezo-stage[J]. Chinese Journal of Scientific Instrument, 2009, 30(12): 2669-2675. (in Chinese)

    CLP Journals

    [1] Fan Yuqi, Zhou Chen, Zhang Jinlong, Liu Jingnan, Yoshihisa Uchida. Research on Ultra-Precision Positioning Technology Using Reflective Gratings[J]. Acta Optica Sinica, 2015, 35(12): 1208002

    [2] Li Xiaotian, Yu Haili, Qi Xiangdong, Zhu Jiwei, Yu Hongzhu, Bayanheshig. 300 mm-Travel Stage of Grating Ruling Engine and Its Self-Adaptive Control Method[J]. Chinese Journal of Lasers, 2014, 41(6): 608001

    [3] LI Xiao-tian, QI Xiang-dong, YU Hai-li, GAO Jian-xiang, FENG Shu-long, BAYANHESHIG. Yaw angle correction of grating line based on single piezoelectric actuator[J]. Optics and Precision Engineering, 2014, 22(8): 2039

    [4] ZHAO Xue-liang, ZHANG Cheng-jin, GU Jian-jun, LIU Hong-bo, LI Kang. Creep characteristics of stack piezoactuator effected by discretized sine voltage[J]. Optics and Precision Engineering, 2014, 22(4): 942

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Dong, ZHANG Cheng-jin, WEI Qiang, TIAN Yan-bing, ZHAO Jing-bo, LI Xian-ming. Modeling and control of piezo-stage using neural networks[J]. Optics and Precision Engineering, 2012, 20(3): 587

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 1, 2011

    Accepted: --

    Published Online: Apr. 16, 2012

    The Author Email: ZHANG Dong (zhangdonggraduate@163.com)

    DOI:10.3788/ope.20122003.0587

    Topics