Acta Optica Sinica, Volume. 41, Issue 6, 0610001(2021)

Hyperspectral Image Classification Based on Local Gaussian Mixture Feature Extraction

Dan Li1,2、*, Fanqiang Kong2, and Deyan Zhu1,2
Author Affiliations
  • 1Key Laboratory of Space Photoelectric Detection and Perception, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
  • 2College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
  • show less
    Figures & Tables(20)
    Denoising results of MNF method in Indian Pines dataset. (a) 1st band of Indian Pines dataset; (b) 5th band of Indian Pines dataset; (c) 1st band after dimensionality reduction
    Flowchart of proposed method
    Indian Pines dataset. (a) False colour image; (b) correct classification diagram; (c) category name
    Pavia University dataset. (a) False colour image; (b) correct classification diagram; (c) category name
    Salinas dataset. (a) False colour image; (b) correct classification diagram; (c) category name
    OA curves of three groups of hyperspectral images at different r values
    OA curves of three groups of hyperspectral images at different Q values
    OA curves of three groups of hyperspectral images at different m values
    Classification results of different algorithms on Indian Pines dataset. (a) SVM; (b) LBP; (c) SC-MK; (d) MFASRC; (e) MFKSRC; (f) LCMR; (g) Semi-Sup; (h) LGMFEC
    Classification results of different algorithms on Pavia University dataset. (a) SVM; (b) LBP; (c) SC-MK; (d) MFASRC; (e) MFKSRC; (f) LCMR; (g) Semi-Sup; (h) LGMFEC
    Classification results of different algorithms on Salinas dataset. (a) SVM; (b) LBP; (c) SC-MK; (d) MFASRC; (e) MFKSRC; (f) LCMR; (g) Semi-SUP; (h) LGMFEC
    Classification accuracy of different algorithms in Indian Pines dataset
    Classification accuracy of different algorithms in Pavia University dataset
    Classification accuracy of different algorithms in Salinas dataset
    • Table 1. Number of different samples in Indian Pines dataset

      View table

      Table 1. Number of different samples in Indian Pines dataset

      ClassNameTrainingTest
      1Alfalfa541
      2Corn-no till51423
      3Corn-min till5825
      4Corn5232
      5Grass/pasture5478
      6Grass/tree5725
      7Grass/pasture-mowed524
      8Hay-windrowed5473
      9Oat515
      10Soybean-no till5967
      11Soybean-min till52450
      12Soybean-clean till5588
      13Wheat5200
      14Wood51260
      15Bldg-grass-tree-drive5381
      16Stone-steel588
      Total8010170
    • Table 2. Number of different samples in Pavia University dataset

      View table

      Table 2. Number of different samples in Pavia University dataset

      ClassNameTrainingTest
      1Asphalt106621
      2Meadow1018639
      3Gravel102089
      4Tree103054
      5Metrl sheet101335
      6Grass/tree105019
      7Bitumen101320
      8Brick103672
      9Shadow10937
      Total9042686
    • Table 3. Number of different samples in Salinas dataset

      View table

      Table 3. Number of different samples in Salinas dataset

      ClassNameTrainingTest
      1Broccoli-green-weed 152004
      2Broccoli-green-weed 253721
      3Fallow51971
      4Fallow-rough-plow51386
      5Fallow-smooth52673
      6Stubble53954
      7Celery53574
      8Grapes-untrained511266
      9Soil-vinyary-develop56198
      10Corn-senesced-green-weed53273
      11Lettuce-romaine-4wk51063
      12Lettuce-romaine-5wk51922
      13Lettuce-romaine-6wk5911
      14Lettuce-romaine-7wk51065
      15Vineyard-untrained57263
      16Vineyard-vertical-trellis51802
      Total8054046
    • Table 4. Classification results of different algorithms on Indian Pines dataset

      View table

      Table 4. Classification results of different algorithms on Indian Pines dataset

      ClassSVMLBPSC-MKMFASRCMFKSRCLCMRSemi-SupLGMFEC
      185.8599.7798.0598.05100.0099.76100.00100.00
      244.6755.4654.9849.6653.9763.3367.5068.51
      352.0056.5353.5464.7858.2351.6880.4882.25
      460.5286.7586.3869.4886.2487.9397.8482.89
      577.6472.9662.4777.5976.7979.0280.1580.46
      674.0872.0190.9178.1969.8883.6078.3490.83
      791.3099.2098.70100.0099.60100.00100.00100.00
      871.0698.34100.0099.0998.7898.8499.7999.81
      9100.00100.00100.00100.00100.00100.00100.00100.00
      1051.3366.9066.5068.5467.4269.4573.7372.17
      1140.8460.8657.9656.7766.0559.8861.3564.29
      1253.3751.2762.9865.4861.5671.1474.9778.42
      1398.0097.6296.3599.5099.5099.1599.1599.85
      1481.3493.9074.4587.8391.7995.2788.4991.21
      1545.9178.7579.4593.7374.6079.7498.4386.51
      1690.6899.0097.9598.4197.5696.5999.5099.77
      OA /%57.1069.0667.7269.5771.0972.8376.1578.08
      AA /%69.9179.5880.0481.6981.3883.4687.2587.28
      κ52.1264.9762.4065.8167.5469.4373.6875.36
    • Table 5. Classification results of different algorithms on Pavia University dataset

      View table

      Table 5. Classification results of different algorithms on Pavia University dataset

      ClassSVMLBPSC-MKMFASRCMFKSRCLCMRSemi-SupLGMFEC
      160.8565.2387.2091.5268.8282.3664.9384.95
      262.7259.3777.6870.9472.2886.1385.3390.33
      365.3888.3383.0092.3494.2787.7385.4395.49
      488.6386.4790.2493.7188.3496.3290.6593.97
      599.75100.0099.7599.9399.9699.1099.9399.39
      680.0288.2086.5489.4586.4291.0888.4793.93
      781.8995.8392.3299.9098.1795.6099.0998.83
      869.5689.6785.4596.1289.5983.1988.5587.54
      992.3395.7591.2599.3295.1594.9178.6684.83
      OA /%67.4172.9583.4783.8279.2987.5883.9990.62
      AA /%77.8585.1088.1692.5888.1190.7186.7892.14
      κ59.4266.2281.1479.4173.9983.9680.0787.83
    • Table 6. Classification results of different algorithms in Salinas dataset

      View table

      Table 6. Classification results of different algorithms in Salinas dataset

      ClassSVMLBPSC-MKMFASRCMFKSRCLCMRSemi-SupLGMFEC
      198.9299.8298.0799.83100.0099.97100.00100.00
      294.3096.2299.4898.0196.8875.72100.00100.00
      389.9878.8499.4390.3377.8497.9893.3099.87
      493.8194.6796.1899.7999.6396.1898.2799.29
      588.5793.9193.4598.2797.8890.6698.6898.83
      699.6599.7299.7599.7399.7299.2299.2299.82
      798.0395.3299.4798.6496.0196.1699.9299.92
      853.3567.2559.6570.9458.2684.3559.8083.31
      997.4786.8499.9099.3286.8683.6299.9599.99
      1068.3072.0188.4982.6489.9291.2395.0896.43
      1194.2793.5697.6697.9396.7399.9795.4896.63
      1292.9683.6188.2099.8993.4096.7597.5099.94
      1398.9689.1892.2897.1993.4997.4695.2896.20
      1491.4895.8588.2594.8895.9795.7594.9393.30
      1567.9374.3680.2474.7179.6783.8099.5586.58
      1691.6973.6589.8885.8087.4192.8199.0099.01
      OA /%81.2682.6486.4688.0584.1289.0590.4694.10
      AA /%88.7587.1891.9292.9990.6092.6095.3896.82
      κ79.2281.0285.4086.7482.4487.8489.6793.44
    Tools

    Get Citation

    Copy Citation Text

    Dan Li, Fanqiang Kong, Deyan Zhu. Hyperspectral Image Classification Based on Local Gaussian Mixture Feature Extraction[J]. Acta Optica Sinica, 2021, 41(6): 0610001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 29, 2020

    Accepted: Nov. 5, 2020

    Published Online: Apr. 7, 2021

    The Author Email: Li Dan (danli@nuaa.edu.cn)

    DOI:10.3788/AOS202141.0610001

    Topics