Acta Optica Sinica, Volume. 41, Issue 6, 0610001(2021)
Hyperspectral Image Classification Based on Local Gaussian Mixture Feature Extraction
Fig. 1. Denoising results of MNF method in Indian Pines dataset. (a) 1st band of Indian Pines dataset; (b) 5th band of Indian Pines dataset; (c) 1st band after dimensionality reduction
Fig. 3. Indian Pines dataset. (a) False colour image; (b) correct classification diagram; (c) category name
Fig. 4. Pavia University dataset. (a) False colour image; (b) correct classification diagram; (c) category name
Fig. 5. Salinas dataset. (a) False colour image; (b) correct classification diagram; (c) category name
Fig. 9. Classification results of different algorithms on Indian Pines dataset. (a) SVM; (b) LBP; (c) SC-MK; (d) MFASRC; (e) MFKSRC; (f) LCMR; (g) Semi-Sup; (h) LGMFEC
Fig. 10. Classification results of different algorithms on Pavia University dataset. (a) SVM; (b) LBP; (c) SC-MK; (d) MFASRC; (e) MFKSRC; (f) LCMR; (g) Semi-Sup; (h) LGMFEC
Fig. 11. Classification results of different algorithms on Salinas dataset. (a) SVM; (b) LBP; (c) SC-MK; (d) MFASRC; (e) MFKSRC; (f) LCMR; (g) Semi-SUP; (h) LGMFEC
Fig. 13. Classification accuracy of different algorithms in Pavia University dataset
|
|
|
|
|
|
Get Citation
Copy Citation Text
Dan Li, Fanqiang Kong, Deyan Zhu. Hyperspectral Image Classification Based on Local Gaussian Mixture Feature Extraction[J]. Acta Optica Sinica, 2021, 41(6): 0610001
Category: Image Processing
Received: Sep. 29, 2020
Accepted: Nov. 5, 2020
Published Online: Apr. 7, 2021
The Author Email: Li Dan (danli@nuaa.edu.cn)