Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1237009(2025)

Lightweight Tilted Droplet Identification Method Based on Improved YOLOv8

Zhaojin Wu1,3, Jun Wang2、*, and Zhaoliang Cao1,3
Author Affiliations
  • 1Key Laboratory of Intelligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu , China
  • 2School of Electronic & Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu , China
  • 3Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu , China
  • show less
    Figures & Tables(18)
    Light-YOLOv8OBB network architecture
    General flow chart of tilted droplet detection and localization
    Illustration of the Ghost Bottleneck[17]. (a) Stride is 1; (b) stride is 2
    C2f module and C2f-light module. (a) Illustration of C2f module; (b) illustration of C2f-light module
    Illustration of GhostConv module
    Illustration of three different module structures. (a) GSConv module; (b) GSBottleneck module; (c) VoV-GSCSP module
    Overview of CBAM module
    Flow chart of post-processing model for tilted droplet image
    Data samples
    Comparison of mAP@0.5:0.95 values between original and improved algorithm
    Visualization of model detection and localization results
    • Table 1. Parameters for training

      View table

      Table 1. Parameters for training

      ParameterValueParameterValue
      PretrainedFalseMosaic0.8
      Epoch300Mixup0.7
      Imgsize640×640HSV_S0.8
      Batch4HSV_V0.8
      IoU0.7OptimizerAdam
    • Table 2. Experimental results of replacing convolutional module in backbone

      View table

      Table 2. Experimental results of replacing convolutional module in backbone

      Conv moduleParams /106FLOPs /109mAP@0.5:0.95 /%
      C2f3.18.369.2
      C32.67.170.7
      C3Ghost2.66.873.9
      C2f-light2.26.175.8
    • Table 3. Experimental results of lightweight neck network

      View table

      Table 3. Experimental results of lightweight neck network

      NeckParams /106FLOPs /109mAP@0.5:0.95 /%
      Base neck3.18.369.2
      Ghost neck2.36.673.2
      Slim-Neck2.26.472.7
    • Table 4. Comparison results of different attention mechanisms

      View table

      Table 4. Comparison results of different attention mechanisms

      ModuleParams /106FLOPs /109mAP@0.5:0.95 /%
      Base3.18.369.2
      Base+CA2.67.171.3
      Base+SE2.67.272.2
      Base+ECA2.67.371.5
      Base+CBAM2.77.273.8
    • Table 5. Comparison results of the ablation experiments

      View table

      Table 5. Comparison results of the ablation experiments

      ModuleParams /106FLOPs /109mAP@0.5:0.95 /%
      Base3.18.369.2
      Base+C2f-light2.26.175.8
      Base+C2f-light+Slim-Neck1.85.273.9
      Base+C2f-light+Slim-Neck+CBAM1.95.476.7
    • Table 6. Comparison of experimental results before and after improvement

      View table

      Table 6. Comparison of experimental results before and after improvement

      AlgorithmParams /106FLOPs /109mAP@0.5:0.95(1) /%mAP@0.5:0.95(2)/%Inference time /ms
      YOLOv8n3.28.753.635.721.3
      YOLOv8n-OBB3.18.369.247.820.5
      Light-YOLOv8OBB1.95.476.767.316.1
    • Table 7. Comparison results of different algorithms on tilted droplet dataset

      View table

      Table 7. Comparison results of different algorithms on tilted droplet dataset

      AlgorithmParams /106FLOPs /109mAP@0.5:0.95 /%Inference time /ms
      YOLOv5n2.77.749.818.9
      YOLOv9t-OBB2.08.270.826.7
      Gliding vertex41.2121.565.843.5
      RoI transformer122.755.179.650.7
      YOLOv11n-OBB2.76.973.222.3
      Oriented R-CNN121.641.172.839.8
      Proposed1. 95.476.716.1
    Tools

    Get Citation

    Copy Citation Text

    Zhaojin Wu, Jun Wang, Zhaoliang Cao. Lightweight Tilted Droplet Identification Method Based on Improved YOLOv8[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1237009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Dec. 20, 2024

    Accepted: Jan. 13, 2025

    Published Online: Jun. 25, 2025

    The Author Email: Jun Wang (wjyhl@126.com)

    DOI:10.3788/LOP242472

    CSTR:32186.14.LOP242472

    Topics