Journal of Synthetic Crystals, Volume. 50, Issue 2, 397(2021)

Research Progress in Molecular Dynamics Simulation of SiO2 Aerogels

YANG Yun, SHI Xinyue, WU Hongya, QIN Shengjian, and ZHANG Guanglei
Author Affiliations
  • [in Chinese]
  • show less
    References(57)

    [1] [1] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211): 741.

    [2] [2] KISTLER S S. Coherent expanded-aerogels[J]. The Journal of Physical Chemistry, 1932, 36(1): 52-64.

    [3] [3] CANTIN M, CASSE M, KOCH L, et al. Silica aerogels used as Cherenkov radiators[J]. Nuclear Instruments and Methods, 1974, 118(1): 177-182.

    [4] [4] HRUBESH L W. Aerogel applications[J]. Journal of Non-Crystalline Solids, 1998, 225: 335-342.

    [5] [5] JONES S M. Aerogel: Space exploration applications[J]. Journal of Sol-Gel Science and Technology, 2006, 40(2/3): 351-357.

    [6] [6] BURCHELL M J, GRAHAM G, KEARSLEY A. Cosmic dust collection in aerogel[J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1): 385-418.

    [7] [7] TABATA M, IMAI E, YANO H, et al. Design of a silica-aerogel-based cosmic dust collector for the tanpopo mission aboard the international space station[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2014, 12(ists29): Pk_29-Pk_34.

    [8] [8] GOETZBERGER A, WITTWER V. Translucent insulation for passive solar energy utilization in buildings[C]//Aerogels, 1986. DOI:10.1007/978-3-642-93313-4_10.

    [9] [9] RUBIN M, LAMPERT C M. Transparent silica aerogels for window insulation[J]. Solar Energy Materials, 1983, 7(4): 393-400.

    [10] [10] FESMIRE J E. Aerogel insulation systems for space launch applications[J]. Cryogenics, 2006, 46(2/3): 111-117.

    [11] [11] NG T Y, YEO J J, LIU Z S. A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing[J]. Journal of Non-Crystalline Solids, 2012, 358(11): 1350-1355.

    [12] [12] YEO J J, LIU Z S, NG T Y. Enhanced thermal characterization of silica aerogels through molecular dynamics simulation[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(7): 075004.

    [13] [13] RIVAS MURILLO J S, BACHLECHNER M E, CAMPO F A, et al. Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation[J]. Journal of Non-Crystalline Solids, 2010, 356(25/26/27): 1325-1331.

    [14] [14] LEI J C, LIU Z S, YEO J, et al. Determination of the Young′s modulus of silica aerogels-an analytical-numerical approach[J]. Soft Matter, 2013, 9(47): 11367.

    [15] [15] FERREIRO-RANGEL C A, GELB L D. Computational study of uniaxial deformations in silica aerogel using a coarse-grained model[J]. The Journal of Physical Chemistry B, 2015, 119(27): 8640-8650.

    [16] [16] PATIL S. Nanoindentation of graphene-reinforced silica aerogel: a molecular dynamics study[J]. Molecules, 2019, 24(7): 1336.

    [17] [17] TILLOTSON T M, HRUBESH L W. Transparent ultralow-density silica aerogels prepared by a two-step Sol-gel process[J]. Journal of Non-Crystalline Solids, 1992, 145: 44-50.

    [18] [18] CROSS J, GOSWIN R, GERLACH R, et al. Mechanical properties of SiO2 - aerogels[J]. Le Journal De Physique Colloques, 1989, 24(C4): C4-185-C4-190.

    [19] [19] LEMAY J D, TILLOTSON T M, HRUBESH L W, et al. Microstructural dependence of aerogel mechanical properties[J]. MRS Proceedings, 1990, 180: 321.

    [20] [20] WOIGNIER T, PELOUS J, PHALIPPOU J, et al. Elastic properties of silica aerogels[J]. Journal of Non-Crystalline Solids, 1987, 95/96: 1197-1202.

    [21] [21] WEI G S, LIU Y S, DU X Z, et al. Gaseous conductivity study on silica aerogel and its composite insulation materials[J]. Journal of Heat Transfer, 2012, 134(4): 041301.

    [22] [22] EBERT H P. Thermal properties of aerogels[M]//Aerogels Handbook. New York: Springer New York, 2011: 537-564.

    [23] [23] FRICKE J. Aerogels: highly tenuous solids with fascinating properties[J]. Journal of Non-Crystalline Solids, 1988, 100(1/2/3): 169-173.

    [24] [24] VAN BEEST B W, KRAMER G J, VAN SANTEN R A. Force fields for silicas and aluminophosphates based on ab initio calculations[J]. Physical Review Letters, 1990, 64(16): 1955-1958.

    [25] [25] KRAMER G J, FARRAGHER N P, VAN BEEST B W, et al. Interatomic force fields for silicas, aluminophosphates, and zeolites: derivation based on ab initio calculations[J]. Phys Rev B Condens Matter, 1991, 43(6): 5068-5080.

    [26] [26] TSUNEYUKI S, TSUKADA M, AOKI H, et al. First-principles interatomic potential of silica applied to molecular dynamics[J]. Physical Review Letters, 1988, 61(7): 869-872.

    [27] [27] GUISSANI Y, GUILLOT B. A numerical investigation of the liquid-vapor coexistence curve of silica[J]. The Journal of Chemical Physics, 1996, 104(19): 7633-7644.

    [28] [28] CARR A, BERTHIER L, HORBACH J, et al. Amorphous silica modeled with truncated and screened Coulomb interactions: a molecular dynamics simulation study[J]. The Journal of Chemical Physics, 2007, 127(11): 114512.

    [29] [29] VASHISHTA P, KALIA R K, RINO J P, et al. Interaction potential for SiO2: a molecular-dynamics study of structural correlations[J]. Phys Rev B Condens Matter, 1990, 41(17): 12197-12209.

    [30] [30] NAKANO A, BI L, KALIA R K, et al. Structural correlations in porous silica: molecular dynamics simulation on a parallel computer[J]. Physical Review Letters, 1993, 71(1): 85-88.

    [31] [31] PATIL S P, REGE A, SAGARDAS, et al. Mechanics of nanostructured porous silica aerogel resulting from molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2017, 121(22): 5660-5668.

    [32] [32] TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Phys Rev B Condens Matter, 1988, 37(12): 6991-7000.

    [33] [33] NG T Y, JOSHI S C, YEO J, et al. Effects of nanoporosity on the mechanical properties and applications of aerogels in composite structures[J]. Advances in Nanocomposites, 2016. DOI:10.1007/978-3-319-31662-8_4.

    [34] [34] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.

    [35] [35] KIEFFER J, ANGELL C A. Generation of fractal structures by negative pressure rupturing of SiO2 glass[J]. Journal of Non-Crystalline Solids, 1988, 106(1/2/3): 336-342.

    [36] [36] YEO J J. Modeling and simulation of the structural evolution and thermal properties of ultralight aerogel and 2D materials[D]. Singapore: Nanyang Technological University, 2014. DOI:10.32657/10356/61804

    [37] [37] GELB L D. Simulation and modeling of aerogels using atomistic and mesoscale methods aerogels handbook[J]. 2011. DOI:10.1007/978-1-4419-7589-8_24.

    [38] [38] VACHER R, WOIGNIER T, PHALIPPOU J, et al. Fractal structure of base catalyzed and densified silica aerogels[J]. Journal of Non-Crystalline Solids, 1988, 106(1/2/3): 161-165.

    [39] [39] VACHER R, WOIGNIER T, PELOUS J, et al. Structure and self-similarity of silica aerogels[J]. Phys Rev B Condens Matter, 1988, 37(11): 6500-6503.

    [40] [40] GONALVES W, MORTHOMAS J, CHANTRENNE P, et al. Elasticity and strength of silica aerogels: a molecular dynamics study on large volumes[J]. Acta Materialia, 2018, 145: 165-174.

    [41] [41] WOIGNIER T, PHALIPPOU J, VACHER R, et al. Different kinds of fractal structures in silica aerogels[J]. Journal of Non-Crystalline Solids, 1990, 121(1/2/3): 198-201.

    [42] [42] KALLALA M, JULLIEN R, CABANE B. Crossover from gelation to precipitation[J]. Journal De Physique II, 1992, 2(1): 7-25.

    [43] [43] EMMERLING A, FRICKE J. Scaling properties and structure of aerogels[J]. Journal of Sol-Gel Science and Technology, 1997, 8(1): 781-788.

    [44] [44] NAKAYAMA T, YAKUBO K, ORBACH R L. Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations[J]. Reviews of Modern Physics, 1994, 66(2): 381.

    [45] [45] ZOSIMOV V V, LYAMSHEV L M. Fractals in wave processes[J]. Physics-Uspekhi, 1995, 38(4): 347-384.

    [46] [46] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690.

    [47] [47] SCHNEIDER T, STOLL E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions[J]. Physical Review B, 1978, 17(3): 1302.

    [48] [48] WOIGNIER T, REYNES J, HAFIDI ALAOUI A, et al. Different kinds of structure in aerogels: relationships with the mechanical properties[J]. Journal of Non-Crystalline Solids, 1998, 241(1): 45-52.

    [49] [49] CAMPBELL T, KALIA R K, NAKANO A, et al. Structural correlations and mechanical behavior in nanophase silica glasses[J]. Physical Review Letters, 1999, 82(20): 4018.

    [50] [50] GROΒ J, FRICKE J. Scaling of elastic properties in highly porous nanostructured aerogels[J]. Nanostructured Materials, 1995, 6(5/6/7/8): 905-908.

    [51] [51] PATIL S P, REGE A, ITSKOV M, et al. Fracture of silica aerogels: an all-atom simulation study[J]. Journal of Non-Crystalline Solids, 2018, 498: 125-129.

    [53] [53] LEE O J, LEE K H, JIN YIM T, et al. Determination of mesopore size of aerogels from thermal conductivity measurements[J]. Journal of Non-Crystalline Solids, 2002, 298(2/3): 287-292.

    [54] [54] KUHN J, GLEISSNER T, ARDUINI-SCHUSTER M C, et al. Integration of mineral powders into SiO2 aerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 291-295.

    [55] [55] RAPAPORT D C. The art of molecular dynamics simulation[M]. Cambridge: Cambridge University Press, 2004.

    [56] [56] MLLER-PLATHE F, BORDAT P. Reverse non-equilibrium molecular dynamics[M]//Novel Methods in Soft Matter Simulations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 310-326.

    [57] [57] JUND P, JULLIEN R. Molecular-dynamics calculation of the thermal conductivity of vitreous silica[J]. Physical Review B, 1999, 59(21): 13707.

    [58] [58] COQUIL T, FANG J, PILON L. Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica[J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4540-4548.

    Tools

    Get Citation

    Copy Citation Text

    YANG Yun, SHI Xinyue, WU Hongya, QIN Shengjian, ZHANG Guanglei. Research Progress in Molecular Dynamics Simulation of SiO2 Aerogels[J]. Journal of Synthetic Crystals, 2021, 50(2): 397

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 21, 2020

    Accepted: --

    Published Online: Mar. 30, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics