AEROSPACE SHANGHAI, Volume. 42, Issue 2, 166(2025)

Numerical Study on the Oblique Detonation Wave Induced by a Transverse Hydrogen Jet

Junhan MA, Ruiyang YAO, and Bin ZHANG*
Author Affiliations
  • School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai200240,China
  • show less
    References(29)

    [2] P WOLAŃSKI. Detonative propulsion. Proceedings of the Combustion Institute, 34, 125-158(2013).

    [3] J CHAN, J P SISLIAN, D ALEXANDER. Numerically simulated comparative performance of a Scramjet and Shcramjet at Mach 11. Journal of Propulsion and Power, 26, 1125-1134(2010).

    [4] Q L LIU, D BACCARELLA, T LEE. Review of combustion stabilization for hypersonic airbreathing propulsion. Progress in Aerospace Sciences, 119, 100636(2020).

    [5] Z L JIANG, Z J ZHANG, Y F LIU et al. Criteria for hypersonic airbreathing propulsion and its experimental verification. Chinese Journal of Aeronautics, 34, 94-104(2021).

    [6] Z L JIANG. Standing oblique detonation for hypersonic propulsion:a review. Progress in Aerospace Sciences, 143, 100955(2023).

    [8] Z J ZHANG, K F MA, W S ZHANG et al. Numerical investigation of a Mach 9 oblique detonation engine with fuel pre-injection. Aerospace Science and Technology, 105, 106054(2020).

    [9] D T PRATT, J W HUMPHREY, D E GLENN. Morphology of standing oblique detonation waves. Journal of Propulsion and Power, 7, 837-845(1991).

    [10] C LI, K KAILASANATH, E S ORAN. Detonation structures behind oblique shocks. Physics of Fluids, 6, 1600-1611(1994).

    [11] C VIGUIER, L F FIGUEIRA DA SILVA, D DESBORDES et al. Onset of oblique detonation waves:comparison between experimental and numerical results for hydrogen-air mixtures. Symposium (International) on Combustion, 26, 3023-3031(1996).

    [12] L F FIGUERIA DA SILVA, B DESHAIES. Stabilization of an oblique detonation wave by a wedge:a parametric numerical study. Combustion and Flame, 121, 152-166(2000).

    [13] H H TENG, H D NG, Z L JIANG. Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proceedings of the Combustion Institute, 36, 2735-2742(2017).

    [14] Y N ZHANG, J S GONG, T WANG. Numerical study on initiation of oblique detonations in hydrogen–air mixtures with various equivalence ratios. Aerospace Science and Technology, 49, 130-134(2016).

    [15] Y N ZHANG, P F YANG, H H TENG et al. Transition between different initiation structures of wedge-induced oblique detonations. AIAA Journal, 56, 4016-4023(2018).

    [16] Q Y QIN, X B ZHANG. Study on the transition patterns of the oblique detonation wave with varying temperature of the hydrogen-air mixture. Fuel, 274, 117827(2020).

    [17] Y H ZHANG, Y S FANG, H D NG et al. Numerical investigation on the initiation of oblique detonation waves in stoichiometric acetylene-oxygen mixtures with high argon dilution. Combustion and Flame, 204, 391-396(2019).

    [18] H B GUO, Y XU, H T ZHENG et al. Ignition limit and shock-to-detonation transition mode of n-heptane/air mixture in high-speed wedge flows. Proceedings of the Combustion Institute, 39, 4771-4780(2023).

    [19] Y LIU, H WANG, K LUO et al. Numerical simulations of wedge-induced oblique detonation waves in ammonia/hydrogen/air mixtures. International Journal of Hydrogen Energy, 86, 199-207(2024).

    [20] T WANG, Y N ZHANG, H H TENG et al. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture. Physics of Fluids, 27(2015).

    [21] H H TENG, C TIAN, Y N ZHANG et al. Morphology of oblique detonation waves in a stoichiometric hydrogen-air mixture. Journal of Fluid Mechanics, 913(2021).

    [22] Q Y QIN, X B ZHANG. A novel method for trigger location control of the oblique detonation wave by a modified wedge. Combustion and Flame, 197, 65-77(2018).

    [23] L YANG, L J YUE, Q F ZHANG. Onset of oblique detonation waves for a cavity-based wedge. AIAA Journal, 60, 2836-2849(2022).

    [25] G X XIANG, Y C ZHANG, C F ZHANG et al. Study on initiation mechanism of oblique detonation induced by blunt bump on wedge surface. Fuel, 323, 124314(2022).

    [26] H B LI, J L LI, C XIONG et al. Investigation of hot jet on active control of oblique detonation waves. Chinese Journal of Aeronautics, 33, 861-869(2020).

    [27] Q Y QIN, X B ZHANG. Study on the initiation characteristics of the oblique detonation wave by a co-flow hot jet. Acta Astronautica, 177, 86-95(2020).

    [28] A F WANG, J BIAN, H H TENG. Numerical study on initiation oblique detonation wave by hot jet. Applied Thermal Engineering, 213, 118679(2022).

    [29] J Y YAO, Z Y LIN. Numerical investigation of jet-wedge combinatorial initiation for oblique detonation wave in supersonic premixed mixture. Physics of Fluids, 35(2023).

    [30] X HAN, R F QIU, Y C YOU. Flow characteristics and propulsive performance of oblique detonation waves induced by a transverse jet. Physics of Fluids, 36(2024).

    [31] A KÉROMNÈS, W K METCALFE, K A HEUFER et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combustion and Flame, 160, 995-1011(2013).

    [32] B J MCBRIDE, M J ZEHE, S GORDON. Nasa glenn coefficients for calculating thermodynamic properties of individual species(2002).

    Tools

    Get Citation

    Copy Citation Text

    Junhan MA, Ruiyang YAO, Bin ZHANG. Numerical Study on the Oblique Detonation Wave Induced by a Transverse Hydrogen Jet[J]. AEROSPACE SHANGHAI, 2025, 42(2): 166

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Simulation and Analysis

    Received: Sep. 30, 2024

    Accepted: --

    Published Online: May. 26, 2025

    The Author Email:

    DOI:10.19328/j.cnki.2096-8655.2025.02.016

    Topics