AEROSPACE SHANGHAI, Volume. 42, Issue 2, 166(2025)
Numerical Study on the Oblique Detonation Wave Induced by a Transverse Hydrogen Jet
[2] P WOLAŃSKI. Detonative propulsion. Proceedings of the Combustion Institute, 34, 125-158(2013).
[3] J CHAN, J P SISLIAN, D ALEXANDER. Numerically simulated comparative performance of a Scramjet and Shcramjet at Mach 11. Journal of Propulsion and Power, 26, 1125-1134(2010).
[4] Q L LIU, D BACCARELLA, T LEE. Review of combustion stabilization for hypersonic airbreathing propulsion. Progress in Aerospace Sciences, 119, 100636(2020).
[5] Z L JIANG, Z J ZHANG, Y F LIU et al. Criteria for hypersonic airbreathing propulsion and its experimental verification. Chinese Journal of Aeronautics, 34, 94-104(2021).
[6] Z L JIANG. Standing oblique detonation for hypersonic propulsion:a review. Progress in Aerospace Sciences, 143, 100955(2023).
[8] Z J ZHANG, K F MA, W S ZHANG et al. Numerical investigation of a Mach 9 oblique detonation engine with fuel pre-injection. Aerospace Science and Technology, 105, 106054(2020).
[9] D T PRATT, J W HUMPHREY, D E GLENN. Morphology of standing oblique detonation waves. Journal of Propulsion and Power, 7, 837-845(1991).
[10] C LI, K KAILASANATH, E S ORAN. Detonation structures behind oblique shocks. Physics of Fluids, 6, 1600-1611(1994).
[11] C VIGUIER, L F FIGUEIRA DA SILVA, D DESBORDES et al. Onset of oblique detonation waves:comparison between experimental and numerical results for hydrogen-air mixtures. Symposium (International) on Combustion, 26, 3023-3031(1996).
[12] L F FIGUERIA DA SILVA, B DESHAIES. Stabilization of an oblique detonation wave by a wedge:a parametric numerical study. Combustion and Flame, 121, 152-166(2000).
[13] H H TENG, H D NG, Z L JIANG. Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proceedings of the Combustion Institute, 36, 2735-2742(2017).
[14] Y N ZHANG, J S GONG, T WANG. Numerical study on initiation of oblique detonations in hydrogen–air mixtures with various equivalence ratios. Aerospace Science and Technology, 49, 130-134(2016).
[15] Y N ZHANG, P F YANG, H H TENG et al. Transition between different initiation structures of wedge-induced oblique detonations. AIAA Journal, 56, 4016-4023(2018).
[16] Q Y QIN, X B ZHANG. Study on the transition patterns of the oblique detonation wave with varying temperature of the hydrogen-air mixture. Fuel, 274, 117827(2020).
[17] Y H ZHANG, Y S FANG, H D NG et al. Numerical investigation on the initiation of oblique detonation waves in stoichiometric acetylene-oxygen mixtures with high argon dilution. Combustion and Flame, 204, 391-396(2019).
[18] H B GUO, Y XU, H T ZHENG et al. Ignition limit and shock-to-detonation transition mode of n-heptane/air mixture in high-speed wedge flows. Proceedings of the Combustion Institute, 39, 4771-4780(2023).
[19] Y LIU, H WANG, K LUO et al. Numerical simulations of wedge-induced oblique detonation waves in ammonia/hydrogen/air mixtures. International Journal of Hydrogen Energy, 86, 199-207(2024).
[20] T WANG, Y N ZHANG, H H TENG et al. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture. Physics of Fluids, 27(2015).
[21] H H TENG, C TIAN, Y N ZHANG et al. Morphology of oblique detonation waves in a stoichiometric hydrogen-air mixture. Journal of Fluid Mechanics, 913(2021).
[22] Q Y QIN, X B ZHANG. A novel method for trigger location control of the oblique detonation wave by a modified wedge. Combustion and Flame, 197, 65-77(2018).
[23] L YANG, L J YUE, Q F ZHANG. Onset of oblique detonation waves for a cavity-based wedge. AIAA Journal, 60, 2836-2849(2022).
[25] G X XIANG, Y C ZHANG, C F ZHANG et al. Study on initiation mechanism of oblique detonation induced by blunt bump on wedge surface. Fuel, 323, 124314(2022).
[26] H B LI, J L LI, C XIONG et al. Investigation of hot jet on active control of oblique detonation waves. Chinese Journal of Aeronautics, 33, 861-869(2020).
[27] Q Y QIN, X B ZHANG. Study on the initiation characteristics of the oblique detonation wave by a co-flow hot jet. Acta Astronautica, 177, 86-95(2020).
[28] A F WANG, J BIAN, H H TENG. Numerical study on initiation oblique detonation wave by hot jet. Applied Thermal Engineering, 213, 118679(2022).
[29] J Y YAO, Z Y LIN. Numerical investigation of jet-wedge combinatorial initiation for oblique detonation wave in supersonic premixed mixture. Physics of Fluids, 35(2023).
[30] X HAN, R F QIU, Y C YOU. Flow characteristics and propulsive performance of oblique detonation waves induced by a transverse jet. Physics of Fluids, 36(2024).
[31] A KÉROMNÈS, W K METCALFE, K A HEUFER et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combustion and Flame, 160, 995-1011(2013).
[32] B J MCBRIDE, M J ZEHE, S GORDON. Nasa glenn coefficients for calculating thermodynamic properties of individual species(2002).
Get Citation
Copy Citation Text
Junhan MA, Ruiyang YAO, Bin ZHANG. Numerical Study on the Oblique Detonation Wave Induced by a Transverse Hydrogen Jet[J]. AEROSPACE SHANGHAI, 2025, 42(2): 166
Category: Simulation and Analysis
Received: Sep. 30, 2024
Accepted: --
Published Online: May. 26, 2025
The Author Email: