Chinese Journal of Lasers, Volume. 50, Issue 11, 1101011(2023)

Nonlinear Propagation Representation and Control for Ultrashort Pulse in Optical Fibers Based on Deep Learning

Hao Sui1, Hongna Zhu1、*, Huanyu Jia1, Mingyu Ou2, Qi Li1, Bin Luo2, and Xihua Zou2
Author Affiliations
  • 1School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
  • 2School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
  • show less
    References(65)

    [1] Agrawal G P[M]. Nonlinear fiber optics(2007).

    [2] Jiang X T, Wang D S, Fan Q R et al. Physics-informed neural network for nonlinear dynamics in fiber optics[J]. Laser & Photonics Reviews, 16, 2100483(2022).

    [3] Jiang M, Wu H S, An Y et al. Fiber laser development enabled by machine learning: review and prospect[J]. PhotoniX, 3, 1-27(2022).

    [4] Salmela L, Tsipinakis N, Foi A et al. Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network[J]. Nature Machine Intelligence, 3, 344-354(2021).

    [5] Zou X H, Lu B, Pan W et al. Photonics for microwave measurements[J]. Laser & Photonics Reviews, 10, 711-734(2016).

    [6] Hu M L, Cai Y. Research progress on mid-infrared ultrafast fiber laser[J]. Chinese Journal of Lasers, 47, 0500009(2020).

    [7] Genty G, Salmela L, Dudley J M et al. Machine learning and applications in ultrafast photonics[J]. Nature Photonics, 15, 91-101(2021).

    [8] Martins G R, Silva L C B, Segatto M E V et al. Design and analysis of recurrent neural networks for ultrafast optical pulse nonlinear propagation[J]. Optics Letters, 47, 5489-5492(2022).

    [9] Zhu B W, Fang Y, Liu W et al. Predicting the dynamic process and model parameters of vector optical solitons under coupled higher-order effects via WL-tsPINN[J]. Chaos, Solitons and Fractals, 162, 112441(2022).

    [10] Wu X Q, Peng J S, Boscolo S et al. Intelligent breathing soliton generation in ultrafast fibre lasers[J]. Laser Photonics Reviews, 16, 2100191(2022).

    [11] Wu X Q, Zhang Y, Peng J S et al. Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers[J]. Nature Communications, 13, 1-10(2022).

    [12] Andral U, Fodil R S, Amrani F et al. Fiber laser mode locked through an evolutionary algorithm[J]. Optica, 2, 275-278(2015).

    [13] Pu G Q, Yi L L, Zhang L et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm[J]. Optica, 6, 362-369(2019).

    [14] Wang Y T, Zhou H Q, Yan J X et al. Advances in computational optics based on deep learning[J]. Chinese Journal of Lasers, 48, 1918004(2021).

    [15] Peng J J, Li X H, Xi S F et al. Intelligent ultrafast photonics based on machine learning: review and prospect(invited)[J]. Acta Photonica Sinica, 51, 0851518(2022).

    [16] Meng J Y, Zhang H B, Zhang M et al. Nonlinear damage compensation of optical fiber based on IPCA-DNN algorithm[J]. Acta Optica Sinica, 41, 2406002(2021).

    [17] Ju J Z, Liu Q T, Li H Z et al. Multi-task optical performance monitoring based on convolutional neural network[J]. Acta Optica Sinica, 42, 2006002(2022).

    [18] Hu J K, Guo X J, Li J P et al. Deep learning-based recognition of modes and mode groups in multimode optical fiber communication system[J]. Acta Optica Sinica, 42, 0406004(2022).

    [19] Yan Q Q, Deng Q H, Zhang J et al. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers[J]. Photonics Research, 9, 1493-1501(2021).

    [20] Zhang Y W, Cai Y, Yuan L X et al. Ultra-short pulse fiber amplifier model based on recurrent neural network(invited)[J]. Infrared and Laser Engineering, 51, 20210857(2022).

    [21] Li Z L, Zhang W H, Wang Y M et al. Advances of machine learning in Brillouin optical time domain analysis sensing systems for temperature extraction[J]. Laser & Optoelectronics Progress, 58, 1306022(2021).

    [22] Musumeci F, Rottondi C, Nag A et al. An overview on application of machine learning techniques in optical networks[J]. IEEE Communications Surveys and Tutorials, 21, 1383-1408(2019).

    [23] Meng L, Hu H F, Hu J Z et al. Image reconstruction of multimode fiber scattering media based on deep learning[J]. Chinese Journal of Lasers, 47, 1206005(2020).

    [24] Yu T, Zhang S J, Chen W et al. Phase dual-resolution networks for a computer-generated hologram[J]. Optics Express, 30, 2378-2389(2022).

    [25] Midtvedt D, Mylnikov V, Stilgoe A et al. Deep learning in light-matter interactions[J]. Nanophotonics, 11, 3189-3214(2022).

    [26] Piprek J. Simulation-based machine learning for optoelectronic device design: perspectives, problems, and prospects[J]. Optical and Quantum Electronics, 53, 175(2021).

    [27] Qu Y R, Zhu H Z, Shen Y C et al. Inverse design of an integrated-nanophotonics optical neural network[J]. Science Bulletin, 65, 1177-1183(2020).

    [28] Goodfellow I, Bengio Y, Courville A[M]. Deep learning(2016).

    [29] Smirnov E A, Timoshenko D M, Andrianov S N. Comparison of regularization methods for ImageNet classification with deep convolutional neural networks[J]. AASRI Procedia, 6, 89-94(2014).

    [30] Yu Y, Si X S, Hu C H et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 31, 1235-1270(2019).

    [31] Zhang S, Gong Y H, Wang J J. The development of deep convolution neural network and its applications on computer vision[J]. Chinese Journal of Computers, 42, 453-482(2019).

    [32] Bennett K P, Parrado-Hernández E. The interplay of optimization and machine learning research[J]. Journal of Machine Learning Research, 7, 1265-1281(2006).

    [34] Boscolo S, Dudley J M, Finot C. Modelling self-similar parabolic pulses in optical fibres with a neural network[J]. Results in Optics, 3, 100066(2021).

    [35] Boscolo S, Finot C. Artificial neural networks for nonlinear pulse shaping in optical fibers[J]. Optics & Laser Technology, 131, 106439(2020).

    [36] Jiang X T, Wang D S, Fan Q R et al. Solving the nonlinear Schrödinger equation in optical fibers using physics-informed neural network[C](2021).

    [37] Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 378, 686-707(2019).

    [39] Wang R Q, Ling L M, Zeng D L et al. A deep learning improved numerical method for the simulation of rogue waves of nonlinear Schrödinger equation[J]. Communications in Nonlinear Science and Numerical Simulation, 101, 105896(2021).

    [40] Wang D S, Song Y C, Li J et al. Data-driven optical fiber channel modeling: a deep learning approach[J]. Journal of Lightwave Technology, 38, 4730-4743(2020).

    [41] Yang H, Niu Z K, Xiao S L et al. Fast and accurate optical fiber channel modeling using generative adversarial network[J]. Journal of Lightwave Technology, 39, 1322-1333(2021).

    [42] Yang H, Niu Z K, Zhao H C et al. Fast and accurate waveform modeling of long-haul multi-channel optical fiber transmission using a hybrid model-data driven scheme[J]. Journal of Lightwave Technology, 40, 4571-4580(2022).

    [43] Teğin U, Dinç N U, Moser C et al. Reusability report: predicting spatiotemporal nonlinear dynamics in multimode fibre optics with a recurrent neural network[J]. Nature Machine Intelligence, 3, 387-391(2021).

    [44] Wu G Z, Fang Y, Wang Y Y et al. Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN[J]. Chaos, Solitons & Fractals, 152, 111393(2021).

    [45] Fang Y, Wu G Z, Wen X K et al. Predicting certain vector optical solitons via the conservation-law deep-learning method[J]. Optics & Laser Technology, 155, 108428(2022).

    [46] Fang Y, Wang Y Y, Liu W et al. Data-driven prediction of soliton solutions of the higher-order NLSE via the strongly-constrained PINN method[J]. Computers & Mathematics With Applications, 127, 144-153(2022).

    [47] Salmela L, Hary M, Mabed M et al. Feed-forward neural network as nonlinear dynamics integrator for supercontinuum generation[J]. Optics Letters, 47, 802-805(2022).

    [48] Sui H, Zhu H N, Wu J et al. Modeling pulse propagation in fiber optical parametric amplifier by a long short-term memory network[J]. Optik, 260, 169125(2022).

    [49] Sui H, Zhu H N, Zhang Y et al. Ultrashort chirped pulse amplification in fiber based on deep learning[J]. Acta Optica Sinica, 43, 0319001(2023).

    [50] Gautam N, Choudhary A, Lall B. Comparative study of neural network architectures for modelling nonlinear optical pulse propagation[J]. Optical Fiber Technology, 64, 102540(2021).

    [51] Shoreh M H, Kamilov U S, Papadopoulos I N et al. A learning approach to optical tomography[J]. Optica, 2, 517-522(2015).

    [52] Rivenson Y, Wu Y C, Ozcan A. Deep learning in holography and coherent imaging[J]. Light: Science & Applications, 8, 1-8(2019).

    [53] Borhani N, Kakkava E, Moser C et al. Learning to see through multimode fibers[J]. Optica, 5, 960-966(2018).

    [54] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach towards scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).

    [55] Zahavy T, Dikopoltsev A, Moss D et al. Deep learning reconstruction of ultrashort pulses[J]. Optica, 5, 666-673(2018).

    [56] Kleinert S, Tajalli A, Nagy T et al. Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks[J]. Optics Letters, 44, 979-982(2019).

    [57] Stanfield M, Ott J, Gardner C et al. Real-time reconstruction of high energy, ultrafast laser pulses using deep learning[J]. Scientific Reports, 12, 1-11(2022).

    [58] Sui H, Zhu H N, Cheng L et al. Deep learning based pulse prediction of nonlinear dynamics in fiber optics[J]. Optics Express, 29, 44080-44092(2021).

    [59] Sui H, Zhu H N, Luo B et al. Physics-based deep learning for modeling nonlinear pulse propagation in optical fibers[J]. Optics Letters, 47, 3912-3915(2022).

    [60] Sidelnikov O, Redyuk A, Sygletos S et al. Advanced convolutional neural networks for nonlinearity mitigation in long-haul WDM transmission systems[J]. Journal of Lightwave Technology, 39, 2397-2406(2021).

    [61] Tay K G, Pakarzadeh H, Huong A et al. Gain prediction of dual-pump fiber optic parametric amplifier based on artificial neural network[J]. Optik, 253, 168579(2022).

    [62] He J Y, Li C Y, Wang P et al. Soliton molecule dynamics evolution prediction based on LSTM neural networks[J]. IEEE Photonics Technology Letters, 34, 193-196(2022).

    [63] Herrera R A. Evaluating a neural network and a convolutional neural network for predicting soliton properties in a quantum noise environment[J]. Journal of the Optical Society of America B, 37, 3094-3098(2020).

    [64] Jiang M, An Y, Huang L J et al. M2 factor estimation in few-mode fibers based on a shallow neural network[J]. Optics Express, 30, 27304-27313(2022).

    [65] Li C Y, He J Y, Liu Y G et al. Comparing performance of deep convolution networks in reconstructing soliton molecules dynamics from real-time spectral interference[J]. Photonics, 8, 51(2021).

    Tools

    Get Citation

    Copy Citation Text

    Hao Sui, Hongna Zhu, Huanyu Jia, Mingyu Ou, Qi Li, Bin Luo, Xihua Zou. Nonlinear Propagation Representation and Control for Ultrashort Pulse in Optical Fibers Based on Deep Learning[J]. Chinese Journal of Lasers, 2023, 50(11): 1101011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Feb. 10, 2023

    Accepted: Apr. 10, 2023

    Published Online: May. 19, 2023

    The Author Email: Zhu Hongna (hnzhu@swjtu.edu.cn)

    DOI:10.3788/CJL230508

    Topics