Chinese Journal of Lasers, Volume. 51, Issue 4, 0402202(2024)
Current Research Status and Future Prospects for High-Performance Metal Laser-Energy-Field Surface Heat Treatment Technologies (Invited)
[1] Zhang J Y, Peng H Y, Cao J S et al. 15 kW fiber coupled diode laser source for laser quenching[J]. Chinese Journal of Lasers, 50, 0501004(2023).
[2] Muthukumaran G, Dinesh Babu P. Laser transformation hardening of various steel grades using different laser types[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 103(2021).
[3] Zhan J B, Wu J Z, Ma R J et al. Effect of microstructure on the superelasticity of high-relative-density Ni-rich NiTi alloys fabricated by laser powder bed fusion[J]. Journal of Materials Processing Technology, 317, 117988(2023).
[4] Ji C, Li K, Zhan J B et al. The effects and utility of homogenization and thermodynamic modeling on microstructure and mechanical properties of SS316/IN718 functionally graded materials fabricated by laser-based directed energy deposition[J]. Journal of Materials Processing Technology, 319, 118084(2023).
[5] Zhan J B, Wu J Z, Ma R J et al. Tuning the functional properties by laser powder bed fusion with partitioned repetitive laser scanning: toward editable 4D printing of NiTi alloys[J]. Journal of Manufacturing Processes, 101, 1468-1481(2023).
[6] Di J, Yao J N, Li M et al. Progress in laser surface modification technology of titanium alloy[J]. Journal of Physics: Conference Series, 2346, 012011(2022).
[7] Babu P D, Marimuthu P. Status of laser transformation hardening of steel and its alloys: a review[J]. Emerging Materials Research, 8, 188-205(2019).
[8] Chi Y M, Gu G C, Yu H J et al. Laser surface alloying on aluminum and its alloys: a review[J]. Optics and Lasers in Engineering, 100, 23-37(2018).
[9] Martínez S, Lamikiz A, Ukar E et al. Analysis of the regimes in the scanner-based laser hardening process[J]. Optics and Lasers in Engineering, 90, 72-80(2017).
[10] Li C, Yu Z B, Gao J X et al. Numerical simulation and experimental study of cladding Fe60 on an ASTM 1045 substrate by laser cladding[J]. Surface and Coatings Technology, 357, 965-977(2019).
[11] Tamanna N, Crouch R, Naher S. Progress in numerical simulation of the laser cladding process[J]. Optics and Lasers in Engineering, 122, 151-163(2019).
[12] Xiong A H, Liu Y H, Li K et al. Numerical simulation and experiments of gray cast iron by laser surface remelting[J]. Laser & Optoelectronics Progress, 59, 0316007(2022).
[13] Liverani E, Lutey A H A, Ascari A et al. A complete residual stress model for laser surface hardening of complex medium carbon steel components[J]. Surface and Coatings Technology, 302, 100-106(2016).
[14] Moradi M, Arabi H, Jamshidi Nasab S et al. A comparative study of laser surface hardening of AISI 410 and 420 martensitic stainless steels by using diode laser[J]. Optics & Laser Technology, 111, 347-357(2019).
[15] Wang B X, Pan Y M, Liu Y et al. Wear behavior of composite strengthened gray cast iron by austempering and laser hardening treatment[J]. Journal of Materials Research and Technology, 9, 2037-2043(2020).
[16] Moradi M, Ghorbani D, Moghadam M K et al. Nd∶YAG laser hardening of AISI 410 stainless steel: microstructural evaluation, mechanical properties, and corrosion behavior[J]. Journal of Alloys and Compounds, 795, 213-222(2019).
[17] Casalino G, Moradi M, Moghadam M K et al. Experimental and numerical study of AISI 4130 steel surface hardening by pulsed Nd∶YAG laser[J]. Materials, 12, 3136(2019).
[18] Moradi M, Arabi H, Shamsborhan M. Multi-objective optimization of high power diode laser surface hardening process of AISI 410 by means of RSM and desirability approach[J]. Optik, 202, 163619(2020).
[19] Moradi M, KaramiMoghadam M. High power diode laser surface hardening of AISI 4130; statistical modelling and optimization[J]. Optics & Laser Technology, 111, 554-570(2019).
[20] Chen C R, Zeng X B, Wang Q T et al. Statistical modelling and optimization of microhardness transition through depth of laser surface hardened AISI 1045 carbon steel[J]. Optics & Laser Technology, 124, 105976(2020).
[21] Khorram A, Davoodi Jamaloei A, Jafari A et al. Nd∶YAG laser surface hardening of AISI 431 stainless steel; mechanical and metallurgical investigation[J]. Optics & Laser Technology, 119, 105617(2019).
[22] Mahmoudi B, Torkamany M J, Aghdam A R S R et al. Laser surface hardening of AISI 420 stainless steel treated by pulsed Nd∶YAG laser[J]. Materials & Design (1980‒2015), 31, 2553-2560(2010).
[23] Writzl V, Rovani A C, Pintaude G et al. Scratch resistances of compacted graphite iron with plasma nitriding, laser hardening, and duplex surface treatments[J]. Tribology International, 143, 106081(2020).
[24] Maharjan N, Zhou W, Wu N E. Direct laser hardening of AISI 1020 steel under controlled gas atmosphere[J]. Surface and Coatings Technology, 385, 125399(2020).
[25] Lesyk D A, Martinez S, Mordyuk B N et al. Combining laser transformation hardening and ultrasonic impact strain hardening for enhanced wear resistance of AISI 1045 steel[J]. Wear, 462/463, 203494(2020).
[26] Lesyk D A, Martinez S, Mordyuk B N et al. Effects of laser heat treatment combined with ultrasonic impact treatment on the surface topography and hardness of carbon steel AISI 1045[J]. Optics & Laser Technology, 111, 424-438(2019).
[27] Maharjan N, Zhou W, Zhou Y et al. Underwater laser hardening of bearing steels[J]. Journal of Manufacturing Processes, 47, 52-61(2019).
[28] Wang Z, Jiang C H, Gan X Y et al. Influence of shot peening on the fatigue life of laser hardened 17-4PH steel[J]. International Journal of Fatigue, 33, 549-556(2011).
[29] Wang Z, Luan W Z, Huang J J et al. XRD investigation of microstructure strengthening mechanism of shot peening on laser hardened 17-4PH[J]. Materials Science and Engineering: A, 528, 6417-6425(2011).
[30] Wang Z, Jiang C H, Gan X Y et al. Effect of shot peening on the microstructure of laser hardened 17-4PH[J]. Applied Surface Science, 257, 1154-1160(2010).
[31] Zhang Q L, Lin J, Chen Z J et al. Phase transformation process of electromagnetic induction assisted laser quenching based on MSC.Marc software[J]. Chinese Journal of Lasers, 48, 1103002(2021).
[32] Moradi M, Karami Moghadam M, Kazazi M. Improved laser surface hardening of AISI 4130 low alloy steel with electrophoretically deposited carbon coating[J]. Optik, 178, 614-622(2019).
[33] Xiong T C, Yin Y Y, Lu D H et al. Microstructure and mechanism of copper layer processed with laser remelting and electrochemical deposition interaction process[J]. Chinese Journal of Lasers, 50, 0402007(2023).
[34] Xu J L, Zou P, Liu L et al. Investigation on the mechanism of a new laser surface structuring by laser remelting[J]. Surface and Coatings Technology, 443, 128615(2022).
[35] Xue P S, Zhu L D, Ning J S et al. The crystallographic texture and dependent mechanical properties of the CrCoNi medium-entropy alloy by laser remelting strategy[J]. Journal of Materials Science & Technology, 111, 245-255(2022).
[36] Yu Z Y, Zheng Y, Chen J M et al. Effect of laser remelting processing on microstructure and mechanical properties of 17-4 PH stainless steel during laser direct metal deposition[J]. Journal of Materials Processing Technology, 284, 116738(2020).
[37] Vaithilingam J, Goodridge R D, Hague R J M et al. The effect of laser remelting on the surface chemistry of Ti6Al4V components fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 232, 1-8(2016).
[38] Karimi J, Antonov M, Kollo L et al. Role of laser remelting and heat treatment in mechanical and tribological properties of selective laser melted Ti6Al4V alloy[J]. Journal of Alloys and Compounds, 897, 163207(2022).
[39] Gustmann T, Schwab H, Kühn U et al. Selective laser remelting of an additively manufactured Cu-Al-Ni-Mn shape-memory alloy[J]. Materials & Design, 153, 129-138(2018).
[40] Chen S, Tao F H, Jia C Z et al. Effect of laser remelting on microstructure and properties of 4Cr5MoSiV1 steel fabricated by selective laser melting[J]. Surface Technology, 49, 209-219(2020).
[41] Wei K W, Lv M, Zeng X Y et al. Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5Sn alloy[J]. Materials Characterization, 150, 67-77(2019).
[42] Zhou J T, Han X, Li H et al. Investigation of layer-by-layer laser remelting to improve surface quality, microstructure, and mechanical properties of laser powder bed fused AlSi10Mg alloy[J]. Materials & Design, 210, 110092(2021).
[43] Wang J G, Gao S Y, Chen X S et al. Mechanical properties of A356 aluminum alloy after laser surface remelting[J]. Chinese Journal of Lasers, 47, 0402002(2020).
[44] Deng D W, Jiang H, Li Z H et al. Multi-objective optimization of laser cladding parameters based on BP neural network[J]. Laser & Optoelectronics Progress, 60, 1714001(2023).
[45] Zhan J B, Lu Y J, Lin J X. On the martensitic transformation temperatures and mechanical properties of NiTi alloy manufactured by selective laser melting: effect of remelting[J]. Acta Metallurgica Sinica (English Letters), 34, 1223-1233(2021).
[46] Chen H X, Kong D J. Effects of laser remelting speeds on microstructure, immersion corrosion, and electrochemical corrosion of arc-sprayed amorphous Al-Ti-Ni coatings[J]. Journal of Alloys and Compounds, 771, 584-594(2019).
[47] Lin D, Gu G Y, Shang J. Effect of laser remelting on microstructure and properties of micro-arc oxidation layer on aluminum alloy[J]. Heat Treatment of Metals, 48, 264-272(2023).
[48] Han T Y, Liu Y, Liao M Q et al. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting[J]. Journal of Materials Science & Technology, 99, 18-27(2022).
[49] Ciubotariu C R, Frunzăverde D, Mărginean G et al. Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings[J]. Optics & Laser Technology, 77, 98-103(2016).
[50] Bian Y C, Peng Y B, Song L F et al. Heterogeneity of 316L/IN718 formed via selective laser melting based on laser remelting optimization process[J]. Chinese Journal of Lasers, 48, 1802009(2021).
[51] Li K, Ma R J, Zhang M et al. Hybrid post-processing effects of magnetic abrasive finishing and heat treatment on surface integrity and mechanical properties of additively manufactured Inconel 718 superalloys[J]. Journal of Materials Science & Technology, 128, 10-21(2022).
[52] Wang L, Yao J H, Hu Y et al. Suppression effect of a steady magnetic field on molten pool during laser remelting[J]. Applied Surface Science, 351, 794-802(2015).
[53] Nie J W, Chen C Y, Shuai S S et al. Effect of static magnetic field on the evolution of residual stress and microstructure of laser remelted inconel 718 superalloy[J]. Journal of Thermal Spray Technology, 29, 1410-1423(2020).
[54] Qiao Q, Cristino V A M, Tam L M et al. Laser surface alloying of titanium alloy with silver: microstructure, hardness and corrosion property[J]. Surface and Coatings Technology, 458, 129357(2023).
[55] Zhang S, Wu C L, Yi J Z et al. Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying[J]. Surface and Coatings Technology, 262, 64-69(2015).
[56] Wu C L, Zhang S, Zhang C H et al. Phase evolution and properties in laser surface alloying of FeCoCrAlCuNix high-entropy alloy on copper substrate[J]. Surface and Coatings Technology, 315, 368-376(2017).
[57] Sun G F, Zhou R, Li P et al. Laser surface alloying of C-B-W-Cr powders on nodular cast iron rolls[J]. Surface and Coatings Technology, 205, 2747-2754(2011).
[58] Pu F, Liu Y F, Xu X Y et al. Microstructure and TiC evolution behavior of TiC/Fe3Al composite coating fabricated by laser surface alloying[J]. Chinese Journal of Lasers, 41, 0703002(2014).
[59] Nath S, Pityana S, Dutta Majumdar J. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance[J]. Surface and Coatings Technology, 206, 3333-3341(2012).
[60] Makuch N, Kulka M, Dziarski P et al. Laser surface alloying of commercially pure titanium with boron and carbon[J]. Optics and Lasers in Engineering, 57, 64-81(2014).
[61] Almeida A, Petrov P, Nogueira I et al. Structure and properties of Al-Nb alloys produced by laser surface alloying[J]. Materials Science and Engineering: A, 303, 273-280(2001).
[62] Tomida S, Nakata K. Fe-Al composite layers on aluminum alloy formed by laser surface alloying with iron powder[J]. Surface and Coatings Technology, 174/175, 559-563(2003).
[63] Guo B G, Zhou J S, Zhang S T et al. Tribological properties of titanium aluminides coatings produced on pure Ti by laser surface alloying[J]. Surface and Coatings Technology, 202, 4121-4129(2008).
[64] Du Y B, He G H, Zhou Z J et al. Study on microstructure and properties of 15-5PH laser cladding coating on 20Cr13 surface[J]. Laser & Optoelectronics Progress, 60, 0914002(2023).
[65] Zhu L D, Xue P S, Lan Q et al. Recent research and development status of laser cladding: a review[J]. Optics & Laser Technology, 138, 106915(2021).
[66] Riquelme A, Rodrigo P, Escalera-Rodríguez M D et al. Analysis and optimization of process parameters in Al-SiCp laser cladding[J]. Optics and Lasers in Engineering, 78, 165-173(2016).
[67] Goodarzi D M, Pekkarinen J, Salminen A. Analysis of laser cladding process parameter influence on the clad bead geometry[J]. Welding in the World, 61, 883-891(2017).
[68] Wang Q, Zhai L L, Zhang L et al. Effect of steady magnetic field on microstructure and properties of laser cladding Ni-based alloy coating[J]. Journal of Materials Research and Technology, 17, 2145-2157(2022).
[69] Sun Y W, Hao M Z. Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd∶YAG laser[J]. Optics and Lasers in Engineering, 50, 985-995(2012).
[70] Ren S X, Li J B, Shi Y M et al. Effect of process parameters on microstructure and wear resistance of 20CrMnTi-based laser cladding Ni60A-TiC coating[J]. Chinese Journal of Lasers, 50, 0802207(2023).
[71] Yuan W Y, Li R F, Chen Z H et al. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings[J]. Surface and Coatings Technology, 405, 126582(2021).
[72] Jin C Y, Ge H H, Zhang Y Z et al. Distribution mechanism of Cr element in laser cladding layer during 316L powder multilayer stacking[J]. Chinese Journal of Lasers, 50, 1202205(2023).
[73] Li J Y, Liu Y D, Zhou Y S et al. Effect of laser remelting on quality and mechanical properties of selective laser melting of TC4[J]. Laser & Optoelectronics Progress, 59, 0514006(2022).
[74] Zhang N, Liu W W, Deng D W et al. Effect of electric-magnetic compound field on the pore distribution in laser cladding process[J]. Optics & Laser Technology, 108, 247-254(2018).
[75] Hu G F, Yang Y, Sun R et al. Microstructure and properties of laser cladding NiCrBSi coating assisted by electromagnetic-ultrasonic compound field[J]. Surface and Coatings Technology, 404, 126469(2020).
[76] Zhu Y, Yang Y, Mu X et al. Study on wear and RCF performance of repaired damage railway wheels: assessing laser cladding to repair local defects on wheels[J]. Wear, 430/431, 126-136(2019).
[77] Zhu L D, Wang S H, Pan H C et al. Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology[J]. Journal of Manufacturing Processes, 49, 344-354(2020).
[78] King A, Steuwer A, Woodward C et al. Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J]. Materials Science and Engineering: A, 435/436, 12-18(2006).
[79] Lim H, Kim P, Jeong H et al. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J]. Journal of Materials Processing Technology, 212, 1347-1354(2012).
[80] Maleki E, Bagherifard S, Unal O et al. Superior effects of hybrid laser shock peening and ultrasonic nanocrystalline surface modification on fatigue behavior of additive manufactured AlSi10Mg[J]. Surface and Coatings Technology, 463, 129512(2023).
[81] Liu S J, Kim Y, Jung J et al. Effect of ultrasonic shot peening and laser shock peening on the microstructure and microhardness of IN738LC alloys[J]. Materials, 16, 1802(2023).
[82] Cellard C, Retraint D, François M et al. Laser shock peening of Ti-17 titanium alloy: influence of process parameters[J]. Materials Science and Engineering: A, 532, 362-372(2012).
[83] Chupakhin S, Klusemann B, Huber N et al. Application of design of experiments for laser shock peening process optimization[J]. The International Journal of Advanced Manufacturing Technology, 102, 1567-1581(2019).
[84] Premnath M, Muruganandhan R, Abeens M. A study on the effect of various process parameters on low pulsed energy of laser shock peening without ablative layer on the mechanical behavior of AA 7075 T651[J]. Surface Topography: Metrology and Properties, 10, 015044(2022).
[85] He Z, Shen Y, Tao J et al. Laser shock peening regulating aluminum alloy surface residual stresses for enhancing the mechanical properties: roles of shock number and energy[J]. Surface and Coatings Technology, 421, 127481(2021).
[86] Feng K, Chen Y, Deng P S et al. Improved high-temperature hardness and wear resistance of Inconel 625 coatings fabricated by laser cladding[J]. Journal of Materials Processing Technology, 243, 82-91(2017).
[87] Li Y T, Wang K M, Fu H G et al. Microstructure and wear resistance of in situ TiC reinforced AlCoCrFeNi-based coatings by laser cladding[J]. Applied Surface Science, 585, 152703(2022).
[88] Cai Z B, Cui X F, Liu Z et al. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing[J]. Optics & Laser Technology, 99, 276-281(2018).
[89] Jiang P, He X L, Li X X et al. Wear resistance of a laser surface alloyed Ti-6Al-4V alloy[J]. Surface and Coatings Technology, 130, 24-28(2000).
[90] Tomida S, Nakata K, Shibata S et al. Improvement in wear resistance of hyper-eutectic Al-Si cast alloy by laser surface remelting[J]. Surface and Coatings Technology, 169/170, 468-471(2003).
[91] Sun L, Guo Y J, Zhang P P et al. Hot corrosion resistance of 8YSZ thermal barrier coating modified by laser alloying[J]. Chinese Journal of Lasers, 50, 0402002(2023).
[92] Zhang Z, Yu T, Kovacevic R. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC[J]. Applied Surface Science, 410, 225-240(2017).
[93] Liu H X, Wang C Q, Zhang X W et al. Improving the corrosion resistance and mechanical property of 45 steel surface by laser cladding with Ni60CuMoW alloy powder[J]. Surface and Coatings Technology, 228, S296-S300(2013).
[94] Bartkowski D, Młynarczak A, Piasecki A et al. Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding[J]. Optics & Laser Technology, 68, 191-201(2015).
[95] Hu Y H, Ling Y H, Zhong H D et al. Effect of cryogenic laser surface modification on the microstructure evolution and corrosion resistance of accident-tolerant FeCrAl alloys[J]. Surface and Coatings Technology, 466, 129637(2023).
[96] Wang H, Ning C Y, Huang Y H et al. Improvement of abrasion resistance in artificial seawater and corrosion resistance in NaCl solution of 7075 aluminum alloy processed by laser shock peening[J]. Optics and Lasers in Engineering, 90, 179-185(2017).
[97] Trdan U, Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and EIS methods[J]. Corrosion Science, 59, 324-333(2012).
[98] Pantelis D I, Bouyiouri E, Kouloumbi N et al. Wear and corrosion resistance of laser surface hardened structural steel[J]. Surface and Coatings Technology, 161, 125-134(2002).
[99] Nikitin I, Altenberger I. Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25‒600 ℃[J]. Materials Science and Engineering: A, 465, 176-182(2007).
[100] Keller S, Chupakhin S, Staron P et al. Experimental and numerical investigation of residual stresses in laser shock peened AA2198[J]. Journal of Materials Processing Technology, 255, 294-307(2018).
[101] Maawad E, Sano Y, Wagner L et al. Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys[J]. Materials Science and Engineering: A, 536, 82-91(2012).
[102] Salimianrizi A, Foroozmehr E, Badrossamay M et al. Effect of laser shock peening on surface properties and residual stress of Al6061-T6[J]. Optics and Lasers in Engineering, 77, 112-117(2016).
[103] Brockman R A, Braisted W R, Olson S E et al. Prediction and characterization of residual stresses from laser shock peening[J]. International Journal of Fatigue, 36, 96-108(2012).
[104] Huang S, Wang Z W, Sheng J et al. Characteristics of residual principal stress distribution on surface around hole of IN718 alloy subjected to laser peening[J]. Chinese Journal of Lasers, 44, 0202004(2017).
[105] Zhou J Z, Xu Z C, Huang S et al. Effects of different stress ratios on fatigue crack growth in laser shot peened 6061-T6 aluminum alloy[J]. Chinese Journal of Lasers, 38, 0903006(2011).
[106] Kendall O, Abrahams R, Paradowska A et al. Influence of multi-layer laser cladding depositions and rail curvature on residual stress in light rail components[J]. Engineering Failure Analysis, 150, 107330(2023).
[107] Deng D W, Chang Z D, Ma Y B et al. Influence of process parameters on microstructure and residual stress of 316L laser cladding layer[J]. Applied Laser, 41, 83-88(2021).
[108] Soriano C, Leunda J, Lambarri J et al. Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades[J]. Applied Surface Science, 257, 7101-7106(2011).
[109] Zhao X H, Zhang H C, Liu Y. Effect of laser surface remelting on the fatigue crack propagation rate of 40Cr steel[J]. Results in Physics, 12, 424-431(2019).
[110] Liu X Q, Yu J B, Shuai S S et al. Cell-to-dendrite transition induced by a static transverse magnetic field during lasering remelting of the nickel-based superalloy[J]. Metallurgical and Materials Transactions B, 49, 3211-3219(2018).
[111] Razavipour M, Legoux J G, Poirier D et al. Artificial neural networks approach for hardness prediction of copper cold spray laser heat treated coatings[J]. Journal of Thermal Spray Technology, 31, 525-544(2022).
[112] Liu Z, Yan R H, Xu M, Yang L, Zhang L et al. Simulation analysis of temperature field of Ni60 nickel-based alloy femtosecond laser cladding high-speed steel substrate[M]. China academic conference on printing and packaging. Lecture notes in electrical engineering, 991, 643-647(2023).
[113] Simoni F, Huxol A, Villmer F J. Improving surface quality in selective laser melting based tool making[J]. Journal of Intelligent Manufacturing, 32, 1927-1938(2021).
Get Citation
Copy Citation Text
Kun Li, Jiahui Fang, Ruobing Liao, Yanhong Jiang, Jun Xu, Jingyang Li, Huajun Cao, Taimin Luo, Jin Zhang. Current Research Status and Future Prospects for High-Performance Metal Laser-Energy-Field Surface Heat Treatment Technologies (Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402202
Category: Laser Surface Machining
Received: Aug. 11, 2023
Accepted: Oct. 16, 2023
Published Online: Jan. 15, 2024
The Author Email: Li Kun (kun.li@cqu.edu.cn)
CSTR:32183.14.CJL231106