Journal of Synthetic Crystals, Volume. 51, Issue 12, 2048(2022)

FirstPrinciples Study on Photogalvanic Effect of Vacancy Defects on Monolayer 2HMoTe2

XU Zhonghui*, ZHAO Shuliang, and LIU Chuanchuan
Author Affiliations
  • [in Chinese]
  • show less
    References(25)

    [1] [1] CHEN W J, LIANG R R, WANG J, et al. Enhanced photoresponsivity and hole mobility of MoTe2 phototransistors by using an Al2O3 highκ gate dielectric[J]. Science Bulletin, 2018, 63(15): 9971005.

    [2] [2] OCTON T J, NAGAREDDY V K, RUSSO S, et al. Fast highresponsivity fewlayer MoTe2 photodetectors[J]. Advanced Optical Materials, 2016, 4(11): 17501754.

    [3] [3] WU E X, XIE Y, ZHANG J, et al. Dynamically controllable polarity modulation of MoTe2 fieldeffect transistors through ultraviolet light and electrostatic activation[J]. Science Advances, 2019, 5(5): eaav3430.

    [4] [4] LIN Y F, XU Y, LIN C Y, et al. Origin of noise in layered MoTe2transistors and its possible use for environmental sensors[J]. Advanced Materials, 2015, 27(42): 66126619.

    [5] [5] WU E X, XIE Y, YUAN B, et al. Ultrasensitive and fully reversible NO2 gas sensing based on ptype MoTe2 under ultraviolet illumination[J]. ACS Sensors, 2018, 3(9): 17191726.

    [6] [6] ZHANG C X, KC S, NIE Y F, et al. Charge mediated reversible metalinsulator transition in monolayer MoTe2 and WxMo1-xTe2 alloy[J]. ACS Nano, 2016, 10(8): 73707375.

    [7] [7] ZHANG F, ZHANG H R, KRYLYUK S, et al. Electricfield induced structural transition in vertical MoTe2 and Mo1-xWxTe2based resistive memories[J]. Nature Materials, 2019, 18(1): 5561.

    [8] [8] KEUM D H, CHO S, KIM J H, et al. Bandgap opening in fewlayered monoclinic MoTe2[J]. Nature Physics, 2015, 11(6): 482486.

    [9] [9] RUPPERT C, ASLAN B, HEINZ T F. Optical properties and band gap of single and fewlayer MoTe2 crystals[J]. Nano Letters, 2014, 14(11): 62316236.

    [10] [10] FROEHLICHER G, LORCHAT E, BERCIAUD S. Direct versus indirect band gap emission and excitonexciton annihilation in atomically thin molybdenum ditelluride (MoTe2)[J]. Physical Review B, 2016, 94(8): 085429.

    [11] [11] CHO S, KIM S, KIM J H, et al. Phase patterning for ohmic homojunction contact in MoTe2[J]. Science, 2015, 349(6248): 625628.

    [12] [12] LIN Y F, XU Y, WANG S T, et al. Ambipolar MoTe2 transistors and their applications in logic circuits[J]. Advanced Materials, 2014, 26(20): 32633269.

    [13] [13] LI Y Z, ZHANG J X, HUANG D D, et al. Roomtemperature continuouswave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity[J]. Nature Nanotechnology, 2017, 12(10): 987992.

    [14] [14] ZHANG Y, CHANG T R, ZHOU B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2[J]. Nature Nanotechnology, 2014, 9(2): 111115.

    [15] [15] MAK K F, LEE C G, HONE J, et al. Atomically thin MoS2: a new directgap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.

    [16] [16] WANG X J, SHANG J, ZHU M J, et al. Controlled growth of largescale uniform 1T′ MoTe2 crystals with tunable thickness and their photodetector applications[J]. Nanoscale Horizons, 2020, 5(6): 954959.

    [17] [17] HUANG J H, DENG K Y, LIU P S, et al. Largearea twodimensional layered MoTe2 by physical vapor deposition and solidphase crystallization in a telluriumfree atmosphere[EB/OL]. 2017: arXiv: 1704.06543. https://arxiv.org/abs/1704.06543.

    [18] [18] HE Q Y, LI P J, WU Z H, et al. Molecular beam epitaxy scalable growth of waferscale continuous semiconducting monolayer MoTe2 on inert amorphous dielectrics[J]. Advanced Materials, 2019: 1901578.

    [19] [19] WALDRON D, TIMOSHEVSKII V, HU Y B, et al. First principles modeling of tunnel magnetoresistance of Fe/MgO/Fe trilayers[J]. Physical Review Letters, 2006, 97(22): 226802.

    [20] [20] TAYLOR J, GUO H, WANG J. Ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a C60 device[J]. Physical Review B, 2001, 63(12): 121104.

    [21] [21] HENRICKSON L E. Nonequilibrium photocurrent modeling in resonant tunneling photodetectors[J]. Journal of Applied Physics, 2002, 91(10): 62736281.

    [22] [22] WALDRON D, HANEY P, LARADE B, et al. Nonlinear spin current and magnetoresistance of molecular tunnel junctions[J]. Physical Review Letters, 2006, 96(16): 166804.

    [23] [23] TENNAKONE K. An oscillating electroscope[J]. American Journal of Physics, 1978, 46(2): 190.

    [24] [24] XIE Y Q, ZHANG L, ZHU Y, et al. Photogalvanic effect in monolayer black phosphorus[J]. Nanotechnology, 2015, 26(45): 455202.

    [25] [25] LI S S, WANG T, CHEN X S, et al. Selfpowered photogalvanic phosphorene photodetectors with high polarization sensitivity and suppressed dark current[J]. Nanoscale, 2018, 10(16): 76947701.

    Tools

    Get Citation

    Copy Citation Text

    XU Zhonghui, ZHAO Shuliang, LIU Chuanchuan. FirstPrinciples Study on Photogalvanic Effect of Vacancy Defects on Monolayer 2HMoTe2[J]. Journal of Synthetic Crystals, 2022, 51(12): 2048

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 25, 2022

    Accepted: --

    Published Online: Feb. 18, 2023

    The Author Email: Zhonghui XU (longxister@163.com)

    DOI:

    CSTR:32186.14.

    Topics