Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 1, 21(2021)
Advances in alternating current-driven light-emitting devices
[1] [1] CHOU H H, CHEN Y H, HSU H P, et al. Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices [J]. Advanced Materials, 2012, 24(43): 5867-5871.
[2] [2] WU S F, LI S H, WANG Y K, et al. White organic LED with a luminous efficacy exceeding 100 lm·W-1 without light out-coupling enhancement techniques [J]. Advanced Functional Materials, 2017, 27(31): 1701314.
[3] [3] LUO D X, CHEN Q Z, GAO Y, et al. Extremely simplified, high-performance, and doping-free white organic light-emitting diodes based on a single thermally activated delayed fluorescent emitter [J]. ACS Energy Letters,2018, 3(7): 1531-1538.
[4] [4] CHAPRAN M, PANDER P, VASYLIEVA M, et al. Realizing 20% external quantum efficiency in electroluminescence with efficient thermally activated delayed fluorescence from an exciplex [J]. ACS Applied Materials & Interfaces,2019, 11(14): 13460-13471.
[7] [7] LI X Y, ZHAO Y B, FAN F J, et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination [J]. Nature Photonics,2018, 12(3): 159-164.
[8] [8] KIM Y H, WOLF C, KIM Y T, et al. Highly efficient light-emitting diodes of colloidal metal-halide perovskite nanocrystals beyond quantum size [J]. ACS Nano, 2017, 11(7): 6586-6593.
[9] [9] ZHANG Z X, YE Y X, PU C D, et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots [J]. Advanced Materials, 2018, 30(28): 1801387.
[12] [12] ENGMANN S, BARITO A J, BITTLE E G, et al. Higher order effects in organic LEDs with sub-bandgap turn-on [J]. Nature Communications, 2019, 10(1): 227.
[13] [13] SALEHI A, DONG C, SHIN D H, et al. Realization of high-efficiency fluorescent organic light-emitting diodes with low driving voltage [J]. Nature Communications, 2019, 10(1): 2305.
[14] [14] AHMAD V, SOBUS J, GREENBERG M, et al. Charge and exciton dynamics of OLEDs under high voltage nanosecond pulse: towards injection lasing [J]. Nature Communications, 2020, 11(1): 4310.
[15] [15] PERUMAL A, FRBEL M, GORANTLA S, et al. Novel approach for alternating current (AC)-driven organic light-emitting devices [J]. Advanced Functional Materials, 2012, 22(1): 210-217.
[16] [16] FRBEL M, PERUMAL A, SCHWAB T, et al. Enhancing the efficiency of alternating current driven organic light-emitting devices by optimizing the operation frequency [J]. Organic Electronics, 2013, 14(3): 809-813.
[17] [17] AN D, LIU H L, WANG S R, et al. Modification of ITO anodes with self-assembled monolayers for enhancing hole injection in OLEDs [J]. Applied Physics Letters, 2019, 114(15): 153301.
[18] [18] LIANG G J, HU H B, LIAO L, et al. Highly flexible and bright electroluminescent devices based on Ag nanowire electrodes and top-emission structure [J]. Advanced Electronic Materials, 2017, 3(3): 1600535.
[19] [19] ZHAO Y B, CHEN R, GAO Y, et al. AC-driven, color- and brightness-tunable organic light-emitting diodes constructed from an electron only device [J]. Organic Electronics, 2013, 14(12): 3195-3200.
[20] [20] WANG L, XIAO L, GU H S, et al. Advances in alternating current electroluminescent devices [J]. Advanced Optical Materials, 2019, 7(7): 1801154.
[21] [21] XU F, ZHU Y. Highly conductive and stretchable silver nanowire conductors [J]. Advanced Materials,2012, 24(37): 5117-5122.
[22] [22] YANG C H, CHEN B H, ZHOU J X, et al. Electroluminescence of giant stretchability [J]. Advanced Materials, 2016, 28(22): 4480-4484.
[23] [23] WANG J X, YAN C Y, CHEE K J, et al. Highly stretchable and self-deformable alternating current electroluminescent devices [J]. Advanced Materials, 2015, 27(18): 2876-2882.
[24] [24] JUN S, KIM Y, JU B K, et al. Extremely flexible, transparent, and strain-sensitive electroluminescent device based on ZnS: Cu-polyvinyl butyral composite and silver nanowires [J]. Applied Surface Science, 2018, 429: 144-150.
[25] [25] XU X L, CHEN X H, HOU Y B, et al. Blue electroluminescence from tris-(8-hydroxyquinoline) aluminum thin film [J]. Chemical Physics Letters, 2000, 325(4): 420-424.
[26] [26] PAN Y F, XIA Y D, ZHANG H J, et al. Recent advances in alternating current-driven organic light-emitting devices [J]. Advanced Materials, 2017, 29(44): 1701441.
[27] [27] LEE S B, FUJITA K, TSUTSUI T. Emission mechanism of double-insulating organic electroluminescence device driven at AC voltage [J]. Japanese Journal of Applied Physics, 2005, 44(9A): 6607-6611.
[28] [28] PERUMAL A, LSSEM B, LEO K. High brightness alternating current electroluminescence with organic light emitting material [J]. Applied Physics Letters, 2012, 100(10): 103307.
[29] [29] LIU S Y, CHANG J H, WU I W, et al. Alternating current driven organic light emitting diodes using lithium fluoride insulating layers [J]. Scientific Reports, 2014, 4(1): 7559.
[30] [30] FRBEL M, HOFMANN S, LEO K, et al. Optimizing the internal electric field distribution of alternating current driven organic light-emitting devices for a reduced operating voltage [J]. Applied Physics Letters, 2014, 104(7): 071105.
[31] [31] ZHANG L, NAKANOTANI H, YOSHIDA K, et al. Analysis of alternating current driven electroluminescence in organic light emitting diodes: a comparative study [J]. Organic Electronics,2014, 15(8): 1815-1821.
[32] [32] WANG K, LIU Y, WU C X, et al. Electroluminescence from μLED without external charge injection [J]. Scientific Reports,2020, 10(1): 8059.
[33] [33] SUNG J, CHOI Y S, KANG S J, et al. AC field-induced polymer electroluminescence with single wall carbon nanotubes [J]. Nano Letters, 2011, 11(3): 966-972.
[34] [34] CHO S H, JO S S, HWANG I, et al. Extremely bright full color alternating current electroluminescence of solution-blended fluorescent polymers with self-assembled block copolymer micelles [J]. ACS Nano,2013, 7(12): 10809-10817.
[35] [35] CHEN Y H, XIA Y D, SUN H D, et al. Solution-processed highly efficient alternating current-driven field-induced polymer electroluminescent devices employing high-k relaxor ferroelectric polymer dielectric [J]. Advanced Functional Materials, 2014, 24(11): 1501-1508.
[36] [36] XIA F T, SUN X W, CHEN S M. Alternating-current driven quantum-dot light-emitting diodes with high brightness [J]. Nanoscale, 2019, 11(12): 5231-5239.
[37] [37] CHEN Y H, XIA Y D, SMITH G M, et al. Solution-processable hole-generation layer and electron-transporting layer: towards high-performance, alternating-current-driven, field-induced polymer electroluminescent devices [J]. Advanced Functional Materials, 2014, 24(18): 2677-2688.
[38] [38] LEE J H, CHO S H, KIM R H, et al. A field-induced hole generation layer for high performance alternating current polymer electroluminescence and its application to extremely flexible devices [J]. Journal of Materials Chemistry C, 2016, 4(20): 4434-4441.
[39] [39] XIA Y D, CHEN Y H, SUN H D, et al. Alternating current-driven, white field-induced polymer electroluminescent devices with high power efficiency [J]. Organic Electronics, 2014, 15(11): 3282-3291.
[40] [40] CHEN Y H, XIA Y D, SMITH G M, et al. Frequency-dependent, alternating current-driven, field-induced polymer electroluminescent devices with high power efficiency [J]. Advanced Materials, 2014, 26(48): 8133-8140.
[41] [41] XIA Y D, CHEN Y H, SMITH G M, et al. High-performance alternating current field-induced chromatic-stable white polymer electroluminescent devices employing a down-conversion layer [J]. Journal of Luminescence, 2015, 161: 82-86.
[42] [42] XU J W, SMITH G M, DUN C C, et al. Layered, nanonetwork composite cathodes for flexible, high-efficiency, organic light emitting devices [J]. Advanced Functional Materials, 2015, 25(28): 4397-4404.
[43] [43] XU J W, CARROLL D L, SMITH G M, et al. Achieving high performance in AC-field driven organic light sources [J]. Scientific Reports, 2016, 6: 24116.
[44] [44] XU J W, CARROLL D L, LI P Y, et al. Solution processing small-molecule organic emitter in field-induced, carrier gated lighting devices [J]. Advanced Optical Materials, 2017, 5(6): 1600917.
[45] [45] XU J W, CARROLL D L, SHAO L Q, et al. Polymer gating white flexible field-induced lighting device [J]. Advanced Materials Technologies, 2017, 2(8): 1700017.
[46] [46] XU J W, CUI Y, SMITH G M, et al. Tailoring spin mixtures by ion-enhanced Maxwell magnetic coupling in color-tunable organic electroluminescent devices [J]. Light: Science & Applications, 2018, 7(1): 46.
[47] [47] LEE S, KIM E H, YU S, et al. Alternating-current MXene polymer light-emitting diodes [J]. Advanced Functional Materials, 2020, 30(32): 2001224.
[48] [48] OH N, KIM B H, CHO S Y, et al. Double-heterojunction nanorod light-responsive LEDs for display applications [J]. Science, 2017, 355(6325): 616-619.
[49] [49] LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes [J]. Advanced Functional Materials, 2016, 26(15): 2435-2445.
[50] [50] YETTAPU G R, TALUKDAR D, SARKAR S, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths [J]. Nano Letters, 2016, 16(8): 4838-4848.
[51] [51] LIU J J, SHENG X X, WU Y Q, et al. All-inorganic perovskite quantum dots/p-Si heterojunction light-emitting diodes under DC and AC driving modes [J]. Advanced Optical Materials, 2018, 6(2): 1700897.
[52] [52] LIU J J, LU Z B, ZHANG X J, et al. Low power consumption red light-emitting diodes based on inorganic perovskite quantum dots under an alternating current driving mode [J]. Nanomaterials, 2018, 8(12): 974.
[53] [53] TAN Z F, LUO J J, YANG L B, et al. Spectrally stable ultra-pure blue perovskite light-emitting diodes boosted by square-wave alternating voltage [J]. Advanced Optical Materials, 2020, 8(2): 1901094.
[54] [54] XU T, ZHOU J G, HUANG C C, et al. Highly simplified tandem organic light-emitting devices incorporating a green phosphorescence ultrathin emitter within a novel interface exciplex for high efficiency [J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10955-10962.
[55] [55] FRBEL M, PERUMAL A, SCHWAB T, et al. White light emission from alternating current organic light-emitting devices using high frequency color-mixing [J]. Physica Status Solidi (A), 2013, 210(11): 2439-2444.
[56] [56] CHO S H, KIM E H, JEONG B, et al. Solution-processed electron-only tandem polymer light-emitting diodes for broad wavelength light emission [J]. Journal of Materials Chemistry C, 2017, 5(1): 110-117.
[57] [57] FRBEL M, SCHWAB T, KLIEM M, et al. Get it white: Color-tunable AC/DC OLEDs [J]. Light: Science & Applications, 2015, 4(2): e247.
[58] [58] ZHANG H, SU Q, CHEN S M. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission [J]. Nature Communications, 2020, 11(1): 2826.
[59] [59] SADAF S M, RA Y H, NGUYEN H P T, et al. Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes [J]. Nano Letters, 2015, 15(10): 6696-6701.
[60] [60] KIM E H, CHO S H, LEE J H, et al. Organic light emitting board for dynamic interactive display [J]. Nature Communications, 2017, 8(1): 14964.
[61] [61] AKYOL F, NATH D N, KRISHNAMOORTHY S, et al. Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes [J]. Applied Physics Letters, 2012, 100(11): 111118.
[62] [62] ZHANG K X, LIANG H W, SHEN R S, et al. Negative differential resistance in low Al-composition p-GaN/Mg-doped Al0.15Ga0.85N/n+-GaN hetero-junction grown by metal-organic chemical vapor deposition on sapphire substrate [J]. Applied Physics Letters, 2014, 104(5): 053507.
[63] [63] ZHANG X, LIU S H, ZHANG L T, et al. In-planar-electrodes organic light-emitting devices for smart lighting applications [J]. Advanced Optical Materials, 2019, 7(3): 1800857.
[64] [64] ZHANG X, PAN T, ZHANG J X, et al. Color-tunable, spectra-stable flexible white top-emitting organic light-emitting devices based on alternating current driven and dual-microcavity technology [J]. ACS Photonics, 2019, 6(9): 2350-2357.
Get Citation
Copy Citation Text
PAN Fei, DAI Yi-zhong, LI Ming-guang, CHEN Run-feng. Advances in alternating current-driven light-emitting devices[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(1): 21
Category:
Received: Oct. 9, 2020
Accepted: --
Published Online: Aug. 22, 2021
The Author Email: