Laser Technology, Volume. 46, Issue 5, 630(2022)

High-Q terahertz all-dielectric metasurface based on bound states in the continuum

WANG Pengfei, HE Fengyan, LIU Jianjun, JING Xufeng, and HONG Zhi
Author Affiliations
  • [in Chinese]
  • show less
    References(44)

    [1] [1] HSU C W, ZHEN B, LEE J, et al. Observation of trapped light within the radiation continuum[J]. Nature, 2013, 499(7457): 188-191.

    [2] [2] HSU C W, ZHEN B, STONE A D, et al. Bound states in the continuum[J]. Nature Reviews Materials, 2016, 1(9): 16048.

    [3] [3] AZZAM S I, KILDISHEV A V. Photonic bound states in the continuum: From basics to applications[J]. Advanced Optical Materials, 2020, 9(1): 2001469.

    [4] [4] SADRIEVA Z F, SINEV I S, KOSHELEV K L, et al. Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness[J]. ACS Photonics, 2017, 4(4): 723-727.

    [5] [5] DOELEMAN H M, MONTICONE F, HOLLANDER W D, et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 2018, 12(7): 397-401.

    [6] [6] POLTNIK Y, PELEG O, DREISOW F, et al. Experimental observation of optical bound states in the continuum[J]. Physical Review Letters, 2011, 107(18): 183901.

    [7] [7] YU Z J, XI X, MA J W, et al. Photonic integrated circuits with bound states in the continuum[J]. Optica, 2019, 6(10): 1342-1348.

    [8] [8] AZZAM S I, SHALAEV V M, BOLTASSEVA A, et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems[J]. Physical Review Letters, 121(25): 253901.

    [9] [9] MARINICA D C, BORISOV A G, SHABANOV S V. Bound states in the continuum in photonics[J]. Physical Review Letters, 2008, 100(18): 183902.

    [10] [10] ZHEN B, HSU C W, LU L, et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 2014, 113(25): 257401.

    [11] [11] MINKOV M, WILLIAMSON A D, XIAO M, et al. Zero-index bound states in the continuum[J]. Physical Review Letters, 2018, 121(26): 263901.

    [12] [12] ZHAO X G, CHEN C X, KAJ K, et al. Terahertz investigation of bound states in the continuum of metallic metasurfaces[J]. Optica, 2020, 7(11): 1548-1554.

    [13] [13] KUPRIIANOV A S, XU Y, SAYANSKIY A, et al. Metasurface engineering through bound states in the continuum[J]. Physical Review Applied, 2019, 12(1): 014024.

    [14] [14] ABUJETAS D R, HOOF N V, HUURNE S T, et al. Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces[J]. Optica, 2019, 6(8): 996-1001.

    [15] [15] FRIEDRICH H, WINTGEN D. Interfering resonances and bound states in the continuum[J]. Physical Review, 1985, A 32(6): 3231-3242.

    [16] [16] CONG L, SINGH R. Symmetry-protected dual bound states in the continuum in metamaterials[J]. Advanced Optical Materials, 2019, 7(13): 1900383.

    [17] [17] HE Y, GUO G, FENG T, et al. Toroidal dipole bound states in the continuum[J]. Physical Review, 2018, B98(16): 161112.

    [18] [18] LI S Y, ZHOU C B, LIU T T, et al. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces[J]. Physical Review, 2019, A100(6): 063803.

    [19] [19] FAN K, SHADRIVOV I V, PADOLLA W J, et al. Dynamic bound states in the continuum[J]. Optica, 2019, 6(2): 446-454.

    [20] [20] KODIGALA A, LEPEIT T, GU Q, et al. Lasing action from photonic bound states in continuum[J]. Nature, 2017, 541(7636): 196-199.

    [21] [21] HAN S, CONG L Q, SRIVASTAVA Y K, et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 2019, 31(37): 1901921.

    [22] [22] HA S T, FU Y H, EMANI N K, et al. Directional lasing in resonant semiconductor nanoantenna arrays[J]. Nature Nanotechnology, 2018, 13(11): 1042-1047.

    [23] [23] LIU Z J, XU Y, LIN Y, et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 2019, 123(25): 253901.

    [24] [24] MURAI S, ABUJETAS D R, CASTELLANOS G W, et al. Bound states in the continuum in the visible emerging from out-of-plane magnetic dipoles[J]. ACS Photonics, 2020, 7(8): 2204-2210.

    [25] [25] ABUJETAS D R, BARREDA , MORENO F, et al. High-Q transparency band in all-dielectric metasurfaces induced by a quasi bound state in the continuum[J]. Laser Photonics Reviews, 2021, 15(1): 2000263.

    [26] [26] LUO X, LI X J, HONG Z, et al. Excitation of high Q toroidal dipole resonance in an all-dielectric metasurface[J]. Optical Materials Express, 2020, 10(2): 358-368.

    [27] [27] HUANG C, ZHANG C, XIAO S, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367(6481): 1018-1021.

    [28] [28] CARLETTI L, KOSHELEV K, ANGELIS C D, et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 2018, 121(3): 033903.

    [29] [29] YESIKOY F, ARVELO E R, JAHANI Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 2019, 13(6): 390-396.

    [30] [30] TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109.

    [31] [31] SRIVASTAVA Y K, AKO R T, GUPTA M, et al. Terahertz sensing of 7nm dielectric film with bound states in the continuum metasurfaces[J]. Applied Physics Letters, 2019, 115(15): 151105.

    [32] [32] WANG Y L, HAN Z H, DU Y, et al. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface[J]. Nanophotonics, 2021, 10(4): 1295-1307.

    [33] [33] ZHOU C B, LI S Y, WANG Y, et al. Multiple toroidal dipole Fano resonances of asymmetric dielectric nanohole arrays[J]. Physical Review, 2019, B100(19): 195306.

    [34] [34] WANG Z H, CHEN L L, HONG Z, et al, Analogue of electromagnetically induced transparency with ultra-narrow bandwidth in a silicon terahertz metasurface[J]. Optical Materials Express, 2021, 11(7): 1943-1952.

    [35] [35] LIU Y H, LUO Y, JIN X Y, et al. High-Q Fano resonances in asymmetric and symmetric all-dielectric metasurfaces[J]. Plasmonics, 2017, 12(5): 1431-1438.

    [36] [36] ZHOU C B. The study of Fano resonance in all-dielectric nanostructures and their applications[D]. Wuhan: Huazhong University of Science and Technology, 2019: 16-18(in Chinese).

    [37] [37] MA T, HUANG Q P, HE H C, et al. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range[J]. Optica Express, 2019, 12(27): 16624-16634.

    [38] [38] GALLI M, PORTALUPI S L, BELOTTI M, et al. Light scattering and Fano resonances in high-Q photonic crystal nanocavities[J]. Applied Physics Letters, 2009, 94(7): 071101.

    [39] [39] WANG X F, LI S Y, ZHOU C B. Polarization-independent toroidal dipole resonances driven by symmetry-protected BIC in ultraviolet region[J]. Optical Express, 2020, 28(8): 11983-11989.

    [40] [40] SAVINOV V, FEDOTOV V A, ZHELUDEV N I, et al. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials[J]. Physical Review, 2014, B89(20): 205112.

    [41] [41] GAN X, SHIUE R J, GAO Y. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene[J]. Nano Letters, 2013, 13(2): 691-696.

    [42] [42] ZHOU C B, LIU G Q, BAN G X, et al. Tunable Fano resonator using multilayer graphene in the near-infrared region[J]. Applied Physical Letters, 2018, 112(10): 101904.

    [43] [43] QIU X Z. The study of silicon-based all-dielectric metasurface and light emitters[D].Wuhan: Huazhong University of Science and Technology, 2019: 23-26(in Chinese).

    [44] [44] KOSHELEV K, LEPESHOV S, LIU M, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 2018, 121(19): 193903.

    CLP Journals

    [1] ZHENG Shengmei, JIANG Xiaowei, JIANG Dafei, WANG Lin. Dual-band metamaterial absorber based on black phosphorus and its sensing characteristics[J]. Laser Technology, 2023, 47(6): 846

    Tools

    Get Citation

    Copy Citation Text

    WANG Pengfei, HE Fengyan, LIU Jianjun, JING Xufeng, HONG Zhi. High-Q terahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technology, 2022, 46(5): 630

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 30, 2021

    Accepted: --

    Published Online: Oct. 14, 2022

    The Author Email:

    DOI:10.7510/jgjs.issn.1001-3806.2022.05.008

    Topics