Journal of Inorganic Materials, Volume. 39, Issue 10, 1125(2024)

Sonodynamic and Enzyme-like Activities of Niobium-based Coatings: Antimicrobial, Cell Proliferation and Cell Differentiation

Shumin ZHANG1, Xiaowen XI1, Lei SUN1, Ping SUN1,2, Deqiang WANG1、*, and Jie WEI1、*
Author Affiliations
  • 11. Key Laboratory of Preparation and Application of Ultrafine Materials, Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
  • 22. Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai 200235, China
  • show less
    References(32)

    [1] DONG J Y, CHEN F M, YAO Y Y et al. Bioactive mesoporous silica nanoparticle-functionalized titanium implants with controllable antimicrobial peptide release potentiate the regulation of inflammation and osseointegration[J]. Biomaterials, 305, 122465(2024).

    [2] ANTONIAC I, MANESCU V, ANTONIAC A et al. Magnesium- based alloys with adapted interfaces for bone implants and tissue engineering[J]. Regenerative Biomaterials, 10, rbad095(2023).

    [3] BAI L, CHEN P R, ZHAO Y et al. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration[J]. Biomaterials, 278, 121162(2021).

    [4] XU X J, ZUO J H, ZENG H J et al. Improving osseointegration potential of 3D printed PEEK implants with biomimetic periodontal ligament fiber hydrogel surface modifications[J]. Advanced Functional Materials, 34, 2308811(2023).

    [5] XIU P, JIA Z J, LV J et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface[J]. ACS Applied Materials & Interfaces, 8(2016).

    [6] CHENG Y J, ZHANG Y F, ZHAO Z et al. Guanidinium-decorated nanostructure for precision sonodynamic-catalytic therapy of MRSA- infected osteomyelitis[J]. Advanced Materials, 34(2022).

    [7] XU P Y, KANKALA R K, WANG S B et al. Sonodynamic therapy-based nanoplatforms for combating bacterial infections[J]. Ultrasonics Sonochemistry, 100, 106617(2023).

    [8] FENG X B, LEI J, MA L et al. Ultrasonic interfacial engineering of MoS2-modified Zn single-atom catalysts for efficient osteomyelitis sonodynamic ion therapy[J]. Small, 18(2022).

    [9] ZHAO Y C, HUANG T, ZHANG X D et al. Piezotronic and piezo-phototronic effects on sonodynamic disease therapy[J]. Biomedical Engineering Materials, 1, e12006(2023).

    [10] WANG Z R, ZHANG R F, YAN X Y et al. Structure and activity of nanozymes: inspirations for de novo design of nanozymes[J]. Materials Today, 41, 81(2020).

    [11] MOU X Z, WU Q Y, ZHANG Z et al. Nanozymes for regenerative medicine[J]. Small Methods, 6(2022).

    [12] XU Z B, ZHU Y F, XIE M K et al. Mackinawite nanozymes as reactive oxygen species scavengers for acute kidney injury alleviation[J]. Journal of Nanobiotechnology, 21(2023).

    [13] ZHONG C X, LIANG D S, WAN T et al. Ultrafine-grained Nb-Cu immiscible alloy implants for hard tissue repair: fabrication, characterization, and in vitro and in vivo evaluation[J]. Journal of Materials Science & Technology, 127, 214(2022).

    [14] SONG Y P, SUN Q, LUO J Q et al. Cationic and anionic antimicrobial agents Co-templated mesostructured silica nanocomposites with a spiky nanotopology and enhanced biofilm inhibition performance[J]. Nano-Micro Letters, 14(2022).

    [15] SATHASIVAM S, WILLIAMSON B A D, ALTHABAITI S A et al. Chemical vapor deposition synthesis and optical properties of Nb2O5 thin films with hybrid functional theoretical insight into the band structure and band gaps[J]. ACS Applied Materials & Interfaces, 9(2017).

    [16] CHU Y, WANG P, DING Y H et al. High-capacity Sb/Fe2S3 sodium-ion battery anodes fabricated by a one-step redox reaction, followed by ball milling with graphite[J]. ACS Applied Materials & Interfaces, 15(2023).

    [17] RAJAN S T, SENTHILNATHAN J, AROCKIARAJAN A. Sputter-coated N-enriched mixed metal oxides (Ta2O5-Nb2O5-N) composite: a resilient solar driven photocatalyst for water purification[J]. Journal of Hazardous Materials, 452, 131283(2023).

    [18] TIAN F, WANG S Y, SHI K D et al. Dual-depletion of intratumoral lactate and ATP with radicals generation for cascade metabolic- chemodynamic therapy[J]. Advanced Science, 8(2021).

    [19] ZHANG S X, WANG L R, XU T L et al. Luminescent MOF- based nanofibers with visual monitoring and antibacterial properties for diabetic wound healing[J]. ACS Applied Materials & Interfaces, 15(2023).

    [20] WANG X A, LIU T, CHEN M X et al. An erythrocyte-templated iron single-atom nanozyme for wound healing[J]. Advanced Science, 11(2024).

    [21] GAO Z G, LI Y J, ZHANG Y et al. Biomimetic platinum nanozyme immobilized on 2D metal-organic frameworks for mitochondrion-targeting and oxygen self-supply photodynamic therapy[J]. ACS Applied Materials & Interfaces, 12(2020).

    [22] WANG Z Q, LI G L, GAO Y et al. Trienzyme-like iron phosphates- based (FePOs) nanozyme for enhanced anti-tumor efficiency with minimal side effects[J]. Chemical Engineering Journal, 404, 125574(2021).

    [23] HE D C, WANG W J, FENG N et al. Defect-modified nano- BaTiO3 as a sonosensitizer for rapid and high-efficiency sonodynamic sterilization[J]. ACS Applied Materials & Interfaces, 15(2023).

    [24] LIANG S, XIAO X, BAI L X et al. Conferring Ti-based MOFs with defects for enhanced sonodynamic cancer therapy[J]. Advanced Materials, 33(2021).

    [26] BOOTLUCK W, CHITTRAKARN T, TECHATO K et al. S-Scheme α-Fe2O3/TiO2 photocatalyst with Pd cocatalyst for enhanced photocatalytic H2 production activity and stability[J]. Catalysis Letters, 152(2022).

    [27] WANG Y W, HU X S, SONG H R et al. Oxygen vacancies in actiniae-like Nb2O5/Nb2C MXene heterojunction boosting visible light photocatalytic NO removal[J]. Applied Catalysis B-Environmental, 299, 120677(2021).

    [28] TAYYAB M, LIU Y J, LIU Z G et al. One-pot in-situ hydrothermal synthesis of ternary In2S3/Nb2O5/Nb2C Schottky/ S-scheme integrated heterojunction for efficient photocatalytic hydrogen production[J]. Journal of Colloid and Interface Science, 628, 500(2022).

    [29] XING F Y, WANG C Z, LIU S Q et al. Interfacial chemical bond engineering in a direct Z-scheme g-C3N4/MoS2 heterojunction[J]. ACS Applied Materials & Interfaces, 15(2023).

    [30] YANG L, TIAN B S, XIE Y et al. Oxygen-vacancy-rich piezoelectric BiO2-x nanosheets for augmented piezocatalytic, sonothermal, and enzymatic therapies[J]. Advanced Materials, 35(2023).

    [31] DENG R X, ZHOU H, QIN Q X et al. Palladium-catalyzed hydrogenation of black barium titanate for multienzyme- piezoelectric synergetic tumor therapy[J]. Advanced Materials, 36, 2307568(2024).

    [32] RONG Q, LI S Y, ZHOU Y et al. A novel method to improve the osteogenesis capacity of hUCMSCs with dual-directional pre- induction under screened co-culture conditions[J]. Cell Proliferation, 53(2020).

    Tools

    Get Citation

    Copy Citation Text

    Shumin ZHANG, Xiaowen XI, Lei SUN, Ping SUN, Deqiang WANG, Jie WEI. Sonodynamic and Enzyme-like Activities of Niobium-based Coatings: Antimicrobial, Cell Proliferation and Cell Differentiation[J]. Journal of Inorganic Materials, 2024, 39(10): 1125

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 31, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email: Deqiang WANG (Derek_wang@ecust.edu.cn), Jie WEI (jiewei7860@sina.com)

    DOI:10.15541/jim20240160

    Topics