Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0610013(2023)

Pedestrian Target Detection in Subway Scene Using Improved YOLOv5s Algorithm

Xiuzai Zhang1,2、*, Ye Qiu1, and Chen Zhang1
Author Affiliations
  • 1School of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • 2Jiangsu Province Atmospheric Environment and Equipment Technology Collaborative Innovation Center, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • show less
    References(19)

    [1] Che Z F, Miao Z J, Wang M S. Investigation and application of pedestrian detection in metro video monitoring system[J]. Modern Urban Transit, 31-33, 36, 80(2010).

    [2] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 580-587(2014).

    [3] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).

    [4] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).

    [5] Zou Z Y, Gai S Y, Da F P et al. Occluded pedestrian detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 41, 1515001(2021).

    [6] Li J Y, Yang J, Kong B et al. Multi-scale vehicle and pedestrian detection algorithm based on attention mechanism[J]. Optics and Precision Engineering, 29, 1448-1458(2021).

    [7] Bodla N, Singh B, Chellappa R et al. Soft-NMS: improving object detection with one line of code[C], 5562-5570(2017).

    [8] Dong X W, Han Y, Zhang Z et al. Metro pedestrian detection algorithm based on multi-scale weighted feature fusion network[J]. Journal of Electronics & Information Technology, 43, 2113-2120(2021).

    [10] Zhao M H, Zhong S S, Fu X Y et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 16, 4681-4690(2020).

    [11] Mehta S, Rastegari M, Shapiro L et al. ESPNetv2: a light-weight, power efficient, and general purpose convolutional neural network[C], 9182-9192(2019).

    [12] Wang F S, Wang Q S, Chen J G et al. Improved faster R-CNN target detection algorithm based on attention mechanism and soft-NMS[J]. Laser & Optoelectronics Progress, 58, 2420001(2021).

    [13] Chen Y B, Wang H, Han Z. Improved YOLO model with multi-feature fully convolutional network for object detection[J]. Proceedings of SPIE, 11526, 1152607(2020).

    [14] Wang T H. An improved CNN-ResNet deep learning neural network and its application[D], 14-20(2020).

    [15] Yang Y, Li L W, Gao S Y et al. Objects detection from high-resolution remote sensing imagery using training-optimized YOLOv3 network[J]. Laser & Optoelectronics Progress, 58, 1601002(2021).

    [16] Zhao L, Zhang X F. Object detector based on enhanced multi-scale feature fusion pyramid network[C], 289-293(2021).

    [17] Lu X Y, Zhong Y F, Zheng Z et al. GAMSNet: Globally aware road detection network with multi-scale residual learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 175, 340-352(2021).

    [18] Liu S T, Huang D, Wang Y H. Adaptive NMS: refining pedestrian detection in a crowd[C], 6452-6461(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xiuzai Zhang, Ye Qiu, Chen Zhang. Pedestrian Target Detection in Subway Scene Using Improved YOLOv5s Algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0610013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 18, 2021

    Accepted: Jan. 24, 2022

    Published Online: Mar. 7, 2023

    The Author Email: Xiuzai Zhang (zxzhering@163.com)

    DOI:10.3788/LOP213000

    Topics