Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0610013(2023)
Pedestrian Target Detection in Subway Scene Using Improved YOLOv5s Algorithm
[1] Che Z F, Miao Z J, Wang M S. Investigation and application of pedestrian detection in metro video monitoring system[J]. Modern Urban Transit, 31-33, 36, 80(2010).
[2] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 580-587(2014).
[3] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).
[4] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).
[5] Zou Z Y, Gai S Y, Da F P et al. Occluded pedestrian detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 41, 1515001(2021).
[6] Li J Y, Yang J, Kong B et al. Multi-scale vehicle and pedestrian detection algorithm based on attention mechanism[J]. Optics and Precision Engineering, 29, 1448-1458(2021).
[7] Bodla N, Singh B, Chellappa R et al. Soft-NMS: improving object detection with one line of code[C], 5562-5570(2017).
[8] Dong X W, Han Y, Zhang Z et al. Metro pedestrian detection algorithm based on multi-scale weighted feature fusion network[J]. Journal of Electronics & Information Technology, 43, 2113-2120(2021).
[10] Zhao M H, Zhong S S, Fu X Y et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 16, 4681-4690(2020).
[11] Mehta S, Rastegari M, Shapiro L et al. ESPNetv2: a light-weight, power efficient, and general purpose convolutional neural network[C], 9182-9192(2019).
[12] Wang F S, Wang Q S, Chen J G et al. Improved faster R-CNN target detection algorithm based on attention mechanism and soft-NMS[J]. Laser & Optoelectronics Progress, 58, 2420001(2021).
[13] Chen Y B, Wang H, Han Z. Improved YOLO model with multi-feature fully convolutional network for object detection[J]. Proceedings of SPIE, 11526, 1152607(2020).
[14] Wang T H. An improved CNN-ResNet deep learning neural network and its application[D], 14-20(2020).
[15] Yang Y, Li L W, Gao S Y et al. Objects detection from high-resolution remote sensing imagery using training-optimized YOLOv3 network[J]. Laser & Optoelectronics Progress, 58, 1601002(2021).
[16] Zhao L, Zhang X F. Object detector based on enhanced multi-scale feature fusion pyramid network[C], 289-293(2021).
[17] Lu X Y, Zhong Y F, Zheng Z et al. GAMSNet: Globally aware road detection network with multi-scale residual learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 175, 340-352(2021).
[18] Liu S T, Huang D, Wang Y H. Adaptive NMS: refining pedestrian detection in a crowd[C], 6452-6461(2019).
Get Citation
Copy Citation Text
Xiuzai Zhang, Ye Qiu, Chen Zhang. Pedestrian Target Detection in Subway Scene Using Improved YOLOv5s Algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0610013
Category: Image Processing
Received: Nov. 18, 2021
Accepted: Jan. 24, 2022
Published Online: Mar. 7, 2023
The Author Email: Xiuzai Zhang (zxzhering@163.com)