Electronics Optics & Control, Volume. 32, Issue 5, 47(2025)

A High-Performance RL-GAN Model for Multi-tasking Image Generation

YE Xueyi1,2, SHI Yue1,2, HAN Zhuo1,2, LI Wenjie1,2, and WANG Hao1,2
Author Affiliations
  • 1Hangzhou Dianzi University, School of Communication Engineering, Hangzhou 310000, China
  • 2Hangzhou Dianzi University, Key Laboratory of Data Storage and Transmission Technology of Zhejiang Province, Hangzhou 310000, China
  • show less
    References(14)

    [1] [1] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//NIPS'14: Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: NIPS, 2014: 2672-2680.

    [2] [2] MIRZA M, OSINDERO S. Conditional generative adversarial nets[R]. Los Alamos: arXiv Preprint, 2014: arXiv: 1411. 1784.

    [3] [3] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference. Munich: Springer International Publishing, 2015: 234-241.

    [4] [4] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE, 2017: 1125-1134.

    [7] [7] SHIN Y G, SAGONG M C, YEO Y J, et al. PEPSI++: fast and lightweight network for image inpainting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 252-265.

    [9] [9] SARMAD M, LEE H-J, KIM Y-M. RL-GAN-Net: a reinforcement learning agent controlled GAN network for real-time point cloud shape completion[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach: IEEE, 2019: 5898-5907.

    [10] [10] ABBASIAN M, RAJABZADEH T, MORADIPARI A, et al. Controlling the latent space of GANs through reinforcement learning: a case study on task-based image-to-image translation[R]. Los Alamos: arXiv Preprint, 2023: arXiv: 2307. 13978.

    [11] [11] BIGNOLD A, CRUZ F, TAYLOR M E, et al. A conceptual framework for externally-influenced agents: an assisted reinforcement learning review[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(4): 3621-3644.

    [12] [12] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[R]. Los Alamos: arXiv Preprint, 2015: arXiv: 1509. 02971.

    [13] [13] BALKENIUS C, WINBERG S. Fast learning in an actor-critic architecture with reward and punishment[C]//Proceedings of Conference on Tenth Scandinavian Conference on Artificial Intelligence. Stockholm: IOS Press, 2008: 20-27.

    [14] [14] FUJIMOTO S,VAN HOOF H,MEGER D. Addressing function approximation error in actor-critic methods[R]. Los Alamos: arXiv Preprint,2018: arXiv:1802.09477.

    [15] [15] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.

    [16] [16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.

    [17] [17] ZHANG Y M, GAO Y J, LI H L, et al. Crucial semantic classifier-based adversarial learning for unsupervised domain adaptation[R]. Los Alamos: arXiv Preprint, 2023: arXiv: 2302. 01708.

    Tools

    Get Citation

    Copy Citation Text

    YE Xueyi, SHI Yue, HAN Zhuo, LI Wenjie, WANG Hao. A High-Performance RL-GAN Model for Multi-tasking Image Generation[J]. Electronics Optics & Control, 2025, 32(5): 47

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 26, 2024

    Accepted: May. 13, 2025

    Published Online: May. 13, 2025

    The Author Email:

    DOI:10.3969/j.issn.1671-637x.2025.05.008

    Topics