Journal of Infrared and Millimeter Waves, Volume. 41, Issue 6, 995(2022)
Growth and characterization of InAsP/InAsSb superlattices by Metal Organic Chemical Vapor Deposition for mid-wavelength detection
[1] Huang Y, Ryou J H, Dupuis R D et al. Epitaxial growth and characterization of InAs/GaSb and InAs/InAsSb type-II superlattices on GaSb substrates by metalorganic chemical vapor deposition for long wavelength infrared photodetectors[J]. Journal of Crystal Growth, 314, 92-96(2011).
[2] Zhu H, Liu J, Zhu H et al. High operating temperature InAs/GaSb superlattice based mid wavelength infrared photodetectors grown by MOCVD[J]. Photonics, 8, 564(2021).
[3] Chen Y, Liu J, Zhao Y et al. MOCVD growth of InAs/GaSb type-II superlattices on InAs substrates for short wavelength infrared detection[J]. Infrared Physics & Technology, 105, 103209(2020).
[4] Yang W, Ma W, Zhang Y et al. High structural quality of type II InAs/GaSb superlattices for very long wavelength infrared detection by interface control[J]. IEEE Journal of Quantum Electronics, 48, 512-515(2012).
[5] Zhu H, Hao X, Teng Y et al. Long-wavelength InAs/GaSb superlattice detectors with low dark current density grown by MOCVD[J]. IEEE Photonics Technology Letters, 33, 429-432(2021).
[6] Grein C H, Garland J, Flatté M E. Strained and unstrained layer superlattices for infrared detection[J]. Journal of Electronic Materials, 38, 1800-1804(2009).
[7] Binh-Minh N, Guanxi C, Minh-Anh H et al. Growth and characterization of long-wavelength infrared type-II superlattice photodiodes on a 3-in GaSb wafer[J]. IEEE Journal of Quantum Electronics, 47, 686-690(2011).
[8] Ting Z Y, Soibel A, Hglund L et al. Type-II superlattice infrared detectors[J]. Semiconductors and Semimetals, 84, 1-57(2011).
[9] Donetsky D, Belenky G, Svensson S et al. Minority carrier lifetime in type-2 InAs–GaSb strained-layer superlattices and bulk HgCdTe materials[J]. Applied Physics Letters, 97, 052108(2010).
[10] Donetsky D, Svensson S P, Vorobjev L E et al. Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures[J]. Applied Physics Letters, 95, 1897-1243(2009).
[11] Svensson S P, Donetsky D, Wang D et al. Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization[J]. Journal of Crystal Growth, 334, 103-107(2011).
[12] Lackner D, Pitts O J, Steger M et al. Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 μm[J]. Applied Physics Letters, 95, 091101(2009).
[13] Steenbergen E H, Connelly B C, Metcalfe G D et al. Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb[J]. Applied Physics Letters, 99, 251110(2011).
[14] Soibel A, Ting D Z, Rafol S B et al. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density[J]. Applied Physics Letters, 114, 161103(2019).
[15] Ariyawansa G, Reyner C J, Steenbergen E H et al. InGaAs/InAsSb strained layer superlattices for mid-wave infrared detectors[J]. Applied Physics Letters, 108, 022106(2016).
[16] Ariyawansa G, Reyner C J, Duran J M et al. Unipolar infrared detectors based on InGaAs/InAsSb ternary superlattices[J]. Applied Physics Letters, 109, 021112(2016).
[17] Zhu H, Chen Y, Zhao Y et al. Growth and characterization of InGaAs/InAsSb superlattices by metal-organic chemical vapor deposition for mid-wavelength infrared photodetectors[J]. Superlattices and Microstructures, 146, 106655(2020).
[18] Huang Y, Xiong M, Wu Q et al. High-performance mid-wavelength InAs/GaSb superlattice infrared detectors grown by production-scale metalorganic chemical vapor deposition[J]. IEEE Journal of Quantum Electronics, 1-1(2017).
[19] Li X, Zhao Y, Wu Q H et al. Exploring the optimum growth conditions for InAs/GaSb and GaAs/GaSb superlattices on InAs substrates by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 502, 71-75(2018).
[20] Zhu H, Zhu H, Liu J F et al. Short wavelength infrared InPSb/InAs superlattice photodiode grown by metalorganic chemical vapor deposition[J]. Physica Scripta, 97, 035002(2022).
[21] Hao X, Teng Y, Zhao Y et al. Demonstration of a dual-band InAs/GaSb type-II superlattice infrared detector based on a single heterojunction diode[J]. IEEE Journal of Quantum Electronics, 56, 1-6(2020).
[22] Kurtz S R, Allerman A A, Biefeld R M. Midinfrared lasers and light-emitting diodes with InAsSb/InAsP strained-layer superlattice active regions[J]. Applied Physics Letters, 70, 3188-3190(1997).
[23] Biefeld R M, Allerman A A, Kurtz S R et al. Progress in the growth of mid-infrared InAsSb emitters by metal-organic chemical vapor deposition[J]. Journal of Crystal Growth, 195, 356-362(1998).
[24] Yu Z, Nicolaie J, Bertru N et al. Sb surfactant mediated growth of InAs/AlAs0.56Sb0.44 strained quantum well for intersubband absorption at 1.55 μm[J]. Applied Physics Letters, 106, 263(2015).
[25] Machowska-Podsiadlo E, Bugajski M. Eight-band k·p calculations of the electronic states in InAs/GaSb superlattices[C], 1-4(2016).
[26] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III–V compound semiconductors and their alloys[J]. J Appl Phys, 89, 5815-5875(2001).
[27] Kurtz S R, Biefeld R M, Dawson L R et al. Midwave (4 μm) infrared lasers and light‐emitting diodes with biaxially compressed InAsSb active regions[J]. Applied Physics Letters, 64, 812-814(1994).
[28] Wu J, Xu Z, Chen J et al. Temperature-dependent photoluminescence of the InAs-based and GaSb-based type-II superlattices[J]. Infrared Physics & Technology, 92, 18-23(2018).
[29] Jie G, Peng Z, Sun W et al. InAs/GaSb superlattices for photodetection in short wavelength infrared range[J]. Infrared Physics & Technology, 52, 124-126(2009).
[30] Cardona M, Meyer T A, Thewalt M L W. Temperature dependence of the energy gap of semiconductors in the low-temperature limit[J]. Physical Review Letters, 92, 196403(2004).
Get Citation
Copy Citation Text
Yun-Long HUAI, Hong ZHU, He ZHU, Jia-Feng LIU, Meng LI, Zhen LIU, Yong HUANG. Growth and characterization of InAsP/InAsSb superlattices by Metal Organic Chemical Vapor Deposition for mid-wavelength detection[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 995
Category: Research Articles
Received: May. 16, 2022
Accepted: --
Published Online: Feb. 6, 2023
The Author Email: Yong HUANG (yhuang2014@sinano.ac.cn)