Journal of the Chinese Ceramic Society, Volume. 53, Issue 5, 1258(2025)
Research Progress on CO2 Capture in Cement Kiln Flue Gas and Modification of Absorption Efficiency of Calcium Carbide Slag
[5] [5] DUNSTAN M T, DONAT F, BORK A H, et al. CO2 capture at medium to high temperature using solid oxide-based sorbents: Fundamental aspects, mechanistic insights, and recent advances[J]. Chem Rev, 2021, 121(20): 12681-12745.
[6] [6] OCHEDI F O, LIU Y X, ADEWUYI Y G. State-of-the-art review on capture of CO2 using adsorbents prepared from waste materials[J]. Process Saf Environ Prot, 2020, 139: 1-25.
[7] [7] WANG Y F, HLLER S, VIEBAHN P, et al. Integrated assessment of CO2 reduction technologies in China’s cement industry[J]. Int J Greenh Gas Contr, 2014, 20: 27-36.
[8] [8] GAO T M, SHEN L, SHEN M, et al. Evolution and projection of CO2 emissions for China’s cement industry from 1980 to 2020[J]. Renew Sustain Energy Rev, 2017, 74: 522-537.
[9] [9] LI N, MA D, CHEN W Y. Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach[J]. Appl Energy, 2017, 185: 1840-1848.
[11] [11] WOJTACHA-RYCHTER K, KUCHARSKI P, SMOLINSKI A. Conventional and alternative sources of thermal energy in the production of cement—An impact on CO2 emission[J]. Energies, 2021, 14(6): 1539.
[12] [12] XU J H, YI B W, FAN Y. A bottom-up optimization model for long-term CO2 emissions reduction pathway in the cement industry: A case study of China[J]. Int J Greenh Gas Contr, 2016, 44: 199-216.
[19] [19] JI L, YU H, ZHANG R J, et al. Effects of fly ash properties on carbonation efficiency in CO2 mineralisation[J]. Fuel Process Technol, 2019, 188: 79-88.
[20] [20] BOBICKI E R, LIU Q X, XU Z H, et al. Carbon capture and storage using alkaline industrial wastes[J]. Prog Energy Combust Sci, 2012, 38(2): 302-320.
[23] [23] ARIAS B, ABANADES J C, GRASA G S. An analysis of the effect of carbonation conditions on CaO deactivation curves[J]. Chem Eng J, 2011, 167(1): 255-261.
[25] [25] LYSIKOV A I, SALANOV A N, OKUNEV A G. Change of CO2Carrying capacity of CaO in isothermal recarbonation- decomposition cycles[J]. Ind Eng Chem Res, 2007, 46(13): 4633-4638.
[28] [28] TONG X L, LIU W Q, YANG Y D, et al. A semi-industrial preparation procedure of CaO-based pellets with high CO2 uptake performance[J]. Fuel Process Technol, 2019, 193: 149-158.
[29] [29] LI Y J, LIU H L, SUN R Y, et al. Thermal analysis of cyclic carbonation behavior of CaO derived from carbide slag at high temperature[J]. J Therm Anal Calorim, 2012, 110(2): 685-694.
[30] [30] LI Y J, SUN R Y, LIU C T, et al. CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles[J]. Int J Greenh Gas Contr, 2012, 9: 117-123.
[31] [31] LIU K, ZHAO B S, WU Y, et al. Bubbling synthesis and high-temperature CO2 adsorption performance of CaO-based adsorbents from carbide slag[J]. Fuel, 2020, 269: 117481.
[33] [33] CHEN J, DUAN L B, SUN Z K. Review on the development of sorbents for calcium looping[J]. Energy Fuels, 2020, 34(7): 7806-7836.
[34] [34] LUO T, LIU S L, LUO C, et al. Effect of different organic compounds on the preparation of CaO-based CO2 sorbents derived from wet mixing combustion synthesis[J]. Chin J Chem Eng, 2021, 36: 157-169.
[35] [35] LIU C T, LI Y J, SUN R Y, et al. Cyclic CO2 capture of carbide slag modified by pyroligneous acid in calcium looping cycles[J]. Asia-Pacific J Chem Eng, 2014, 9(5): 678-685.
[36] [36] SUN C Y, YAN X Y, LI Y J, et al. Coupled CO2 capture and thermochemical heat storage of CaO derived from calcium acetate[J]. Greenhouse Gases, 2020, 10(5): 1027-1038.
[37] [37] SUN R Y, LI Y J, ZHAO J L, et al. CO2 capture using carbide slag modified by propionic acidincalcium looping process for hydrogen production[J]. Int J Hydrog Energy, 2013, 38(31): 13655-13663.
[38] [38] LI K K, SUN J, ZHANG Y X, et al. Cigarette butt-assisted combustion synthesis of dolomite-derived sorbents with enhanced cyclic CO2 capturing capability for direct solar-driven calcium looping[J]. Sep Purif Technol, 2023, 311: 123269.
[39] [39] AZIMI B, TAHMASEBPOOR M, SANCHEZ-JIMENEZ P E, et al. Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents[J]. Chem Eng J, 2019, 358: 679-690.
[40] [40] GAO C Y, ZHANG Y, LIU X L, et al. Wet combustion synthesis of new thermochemical energy-storage materials based on carbide slag/magnesium oxide using citric acid[J]. Appl Therm Eng, 2024, 248: 123302.
[42] [42] JING J Y, ZHANG X W, LI Q, et al. Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere[J]. Appl Energy, 2018, 220: 419-425.
[44] [44] GAO C Y, ZHANG Y, LI D, et al. Highly cyclic stability and absorbent activity of carbide slag doped with MgO and ZnO for thermochemical energy storage[J]. ACS Omega, 2022, 7(49): 45443-45454.
[45] [45] ZHANG Y H, LI Y J, XU Y F, et al. CaO/CaCO3 thermochemical energy storage performance of MgO/ZnO Co-doped CaO honeycomb in cycles[J]. J Energy Storage, 2023, 66: 107447.
[46] [46] GUO Y F, WANG G D, YU J, et al. Tailoring the performance of Ni-CaO dual function materials for integrated CO2 capture and conversion by doping transition metal oxides[J]. Sep Purif Technol, 2023, 305: 122455.
[47] [47] GUO H X, WANG S P, LI C, et al. Incorporation of Zr into calcium oxide for CO2 capture by a simple and facile sol-gel method[J]. Ind Eng Chem Res, 2016, 55(29): 7873-7879.
[49] [49] SUN S Z, HE S, WU C F. Ni promoted Fe-CaO dual functional materials for calcium chemical dual looping[J]. Chem Eng J, 2022, 441: 135752.
[50] [50] GUO H X, WANG X, WANG H, et al. Double-exchange-induced effective increased CO2 capture of CaO by doping bimetallic oxides with variable valence state[J]. Chem Eng J, 2022, 433: 134490.
[51] [51] JIANG W F, WU F, GAO G, et al. Absorption performance and reaction mechanism study on a novel anhydrous phase change absorbent for CO2 capture[J]. Chem Eng J, 2021, 420: 129897.
[53] [53] LEE C H, CHOI S W, YOON H J, et al. Na2CO3-doped CaO-based high-temperature CO2 sorbent and its sorption kinetics[J]. Chem Eng J, 2018, 352: 103-109.
[54] [54] KURLOV A, KIERZKOWSKA A M, HUTHWELKER T, et al. Na2CO3-modified CaO-based CO2 sorbents: The effects of structure and morphology on CO2 uptake[J]. Phys Chem Chem Phys, 2020, 22(42): 24697-24703.
[55] [55] LI Y, GAO L H, ZHANG J H, et al. Synergetic utilization of microwave - assisted fly ash and carbide slag for simultaneous desulfurization and denitrification: High efficiency, low cost and catalytic mechanism[J]. Chem Eng J, 2022, 437: 135488.
[56] [56] WANG F, LI H, GAO J Y, et al. Treating waste with waste: Facile KHCO3- modified calcium carbide slag for simultaneous removal of NO and SO2[J]. Fuel, 2023, 351: 128967.
[57] [57] TAN Y Y, LIU W Q, ZHANG X Y, et al. Conventional and optimized testing facilities of calcium looping process for CO2 capture: A systematic review[J]. Fuel, 2024, 358: 130337.
[58] [58] TIAN X K, GUO S J, LIN S C, et al. Exploring synergistic sintering factors and nanopore regeneration of calcium-based thermochemical energy storage materials[J]. Sol Energy Mater Sol Cells, 2023, 263: 112593.
[59] [59] SUN J, WANG W Y, YANG Y D, et al. Reactivation mode investigation of spent CaO-based sorbent subjected to CO2 looping cycles or sulfation[J]. Fuel, 2020, 266: 117056.
[61] [61] WANG B W, JIANG T, XU B H, et al. Preparation of the calcium based adsorbent derived from egg shell waste and its CO2 capture performance in the calcium looping[J]. Chem Ind Eng Prog, 2022, 41(3): 1289-1297.
[62] [62] ZHANG W, LI Y J, HE Z R, et al. CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions[J]. Appl Energy, 2017, 206: 869-878.
[64] [64] DE LENA E, ARIAS B, ROMANO M C, et al. Integrated calcium looping system with circulating fluidized bed reactors for low CO2 emission cement plants[J]. Int J Greenh Gas Contr, 2022, 114: 103555.
[67] [67] WU S M, LI Y J, ZHAO J L, et al. Simultaneous CO2/SO2 adsorption performance of carbide slag in adsorption/desorption cycles[J]. Can J Chem Eng, 2016, 94(1): 33-40.
[69] [69] ZHAO Z H, PATCHIGOLLA K, WU Y H, et al. Performance study on Ca-based sorbents for sequential CO2 and SO2 capture in a bubbling fluidised bed[J]. Fuel Process Technol, 2021, 221: 106938.
[70] [70] XU Y Q, SHEN C, LU B W, et al. Study on the effect of NaBr modification on CaO-based sorbent for CO2 capture and SO2 capture[J]. Carbon Capture Sci Technol, 2021, 1: 100015.
[71] [71] LI C C, GONG X L, ZHANG H, et al. CO2 capture performance of CaO-based sorbent modified with torrefaction condensate during calcium looping cycles[J]. Chem Eng J, 2023, 469: 144004.
[72] [72] TANG H J, YOU W Q, WANG Z W, et al. Detrimental effects of SO2 on gaseous mercury(II) adsorption and retention by CaO-based sorbent traps: Competition and heterogeneous reduction[J]. J Hazard Mater, 2020, 387: 121679.
[73] [73] ZHANG M H, CHEN H C, LIANG C, et al. Novel technology for synergistic SO2 reduction during the carbonation processviaa CaO-char mixed system[J]. Chem Eng J, 2024, 488: 150678.
Get Citation
Copy Citation Text
WANG Yali, CHEN Zesheng, CUI Suping, YANG Jinlong, PEI Tianrui. Research Progress on CO2 Capture in Cement Kiln Flue Gas and Modification of Absorption Efficiency of Calcium Carbide Slag[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1258
Category:
Received: Sep. 18, 2024
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: