Journal of Inorganic Materials, Volume. 40, Issue 6, 609(2025)

Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics

Zhichao HU1, Hongyu YANG2、*, Hongcheng YANG3, Chengli SUN1, Jun YANG4, and Enzhu LI1、*
Author Affiliations
  • 11. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 22. School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China
  • 33. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
  • 44. China Zhenhua Group Yunke Electronics Co., Ltd., Guiyang 550018, China
  • show less
    References(110)

    [1] REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks[J]. Journal of the American Ceramic Society, 89, 2063(2006).

    [2] SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties[J]. International Materials Reviews, 60, 392(2015).

    [3] ZHOU D, PANG L X, WANG D W et al. BiVO4 based high k microwave dielectric materials: a review[J]. Journal of Materials Chemistry C, 6, 9290(2018).

    [4] JOSEPH T, SEBASTIAN M T. Microwave dielectric properties of (Sr1-xAx)2(Zn1-xBx)Si2O7 ceramics (A=Ca, Ba and B=Co, Mg, Mn, Ni)[J]. Journal of the American Ceramic Society, 93, 147(2010).

    [5] YANG H C, ZHANG S R, YANG H Y et al. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams[J]. Journal of Advanced Ceramics, 10, 885(2021).

    [6] HUANG Z P, QIAO J L, LI L X. Crystal structure and microwave dielectric characteristics of ixiolite ceramics with molybdenum ion modification and tri-layered structure[J]. Journal of Alloys and Compounds, 931:, 167489(2023).

    [7] UBIC R, REANEY I M, LEE W E. Microwave dielectric solid- solution phase in system BaO-Ln2O3-TiO2 (Ln = lanthanide cation)[J]. International Materials Reviews, 43, 205(1998).

    [8] TAKAHASHI H, BABA Y, EZAKI K et al. Microwave dielectric properties and crystal structure of CaO-Li2O-(1-x)Sm2O3-xLn2O3- TiO2 (Ln: lanthanide) ceramics system[J]. Japanese Journal of Applied Physics, 35(1996).

    [9] CAVA R J. Dielectric materials for applications in microwave communications[J]. Journal of Materials Chemistry, 11, 54(2001).

    [10] VANDERAH T A. Talking ceramics[J]. Science, 298, 1182(2002).

    [11] ZHOU D, FAN X Q, JIN X W et al. Structures, phase transformations, and dielectric properties of BiTaO4 ceramics[J]. Inorganic Chemistry, 55, 11979(2016).

    [12] PHILLIPS J C. Dielectric definition of electronegativity[J]. Physical Review Letters, 20, 550(1968).

    [13] VAN VECHTEN J A. Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant[J]. Physical Review, 182:, 891(1969).

    [14] VAN VECHTEN J A. Quantum dielectric theory of electronegativity in covalent systems. II. Ionization potentials and interband transition energies[J]. Physical Review, 187, 1007(1969).

    [15] PHILLIPS J C. Ionicity of the chemical bond in crystals[J]. Reviews of Modern Physics, 42, 317(1970).

    [16] LEVINE B F. Bond susceptibilities and ionicities in complex crystal structures[J]. Journal of Chemical Physics, 59, 1463(1973).

    [17] XUE D F, ZHANG S Y. Calculation of the nonlinear optical coefficient of the NdAl3(BO3)4 crystal[J]. Journal of Physics: Condensed Matter, 8:, 1949(1996).

    [18] PENN D R. Wave-number-dependent dielectric function of semiconductors[J]. Physical Review, 128, 2093(1962).

    [19] KUCHARCZYK W. A bond-charge calculation of the quadratic electro-optic effect in LiF[J]. Journal of Physics C: Solid State Physics, 20, 1875(1987).

    [20] YANG H Y, ZHANG S R, YANG H C et al. Usage of P-V-L bond theory in studying the structural/property regulation of microwave dielectric ceramics: a review[J]. Inorganic Chemistry Frontiers, 7, 4711(2020).

    [21] SHI J S, ZHANG S Y. Barycenter of energy of lanthanide 4fN-15d configuration in inorganic crystals[J]. The Journal of Physical Chemistry B, 108, 18845(2004).

    [22] WU Z J, MENG Q B, ZHANG S Y. Semiempirical study on the valences of Cu and bond covalency in Y1-xCaxBa2Cu3O6+y[J]. Physical Review B, 58, 958(1998).

    [23] XUE D F, ZHANG S Y. Chemical bond analysis of nonlinearity of urea crystal[J]. The Journal of Physical Chemistry A, 101, 5547(1997).

    [24] LIU D T, ZHANG S Y, WU Z J. Lattice energy estimation for inorganic ionic crystals[J]. Inorganic Chemistry, 42, 2465(2003).

    [25] ROTH G, REDHAMMER G J. A comparison of the clinopyroxene compounds CaZnSi2O6 and CaZnGe2O6[J]. Acta Crystallographica Section C, 61(2005).

    [26] XIAO M, WEI Y S, ZHANG P. The effect of sintering temperature on the crystal structure and microwave dielectric properties of CaCoSi2O6 ceramic[J]. Materials Chemistry and Physics, 225:, 99(2019).

    [27] SUN H P, ZHANG Q L, YANG H et al. (Ca1-xMgx)SiO3: a low-permittivity microwave dielectric ceramic system[J]. Materials Science and Engineering: B, 138, 46(2007).

    [28] LAI Y M, SU H, WANG G et al. Improved microwave dielectric properties of CaMgSi2O6 ceramics through CuO doping[J]. Journal of Alloys and Compounds, 772:, 40(2019).

    [29] XIAO M, WEI Y S, SUN H R et al. Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic[J]. Journal of Materials Science: Materials in Electronics, 29, 20339(2018).

    [30] SUGIHARA J, KAKIMOTO K I, KAGOMIYA I et al. Microwave dielectric properties of porous Mg2SiO4 filling with TiO2 prepared by a liquid phase deposition process[J]. Journal of the European Ceramic Society, 27, 3105(2007).

    [31] LIU K, ZHANG H W, LIU C et al. Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 - a novel high-entropy ceramic[J]. Ceramics International, 48, 23307(2022).

    [32] ZHANG P C, CHEN X Q, CHEN G T et al. Structural dependence of microwave dielectric properties of Ca3MgSi2O8 ceramics[J]. Journal of Materials Science, 57, 10039(2022).

    [33] SONG X Q, LEI W, WANG F et al. Phase evolution, crystal structure, and microwave dielectric properties of gillespite-type ceramics[J]. Journal of the American Ceramic Society, 104, 1740(2021).

    [34] QIN J C, LIU Z F, MA M S et al. Structure and microwave dielectric properties of gillespite-type ACuSi4O10 (A = Ca, Sr, Ba) ceramics and quantitative prediction of the Q × f value via machine learning[J]. ACS Applied Materials & Interfaces, 13, 17817(2021).

    [35] CHENG Z L, XU L M, WANG X et al. The effect of B-site ions on crystal structure evolution and microwave dielectric properties of gillespite-type SrCu0.95B0.05(B2+: Cu, Co, Mn, Ni, Mg, Zn)Si4O10[J]. Ceramics International, 49, 36800(2023).

    [36] HUANG F Y, SU H, ZHANG Q et al. The structural characteristics and microwave dielectric properties of Ti4+ doped CaMgSi2O6 ceramics[J]. Ceramics International, 48, 33615(2022).

    [37] KORNEV I, BICHURIN M, RIVERA J P et al. Magnetoelectric properties of LiCoPO4 and LiNiPO4[J]. Physical Review B: Condensed Matter and Materials Physics, 62, 12247(2000).

    [38] BIAN J J, KIM D W, HONG K S. Glass-free LTCC microwave dielectric ceramics[J]. Materials Research Bulletin, 40, 2120(2005).

    [39] GUO T, WU W J, WANG Y L et al. Relations on synthesis, crystal structure and microwave dielectric properties of SrZnP2O7 ceramics[J]. Ceramics International(2012).

    [40] ZHANG P, WU S X, XIAO M. The microwave dielectric properties and crystal structure of low temperature sintering LiNiPO4 ceramics[J]. Journal of the European Ceramic Society, 38, 4433(2018).

    [41] TIAN H R, ZHANG X H, ZHANG Z D et al. Low-permittivity LiLn(PO3)4 (Ln = La, Sm, Eu) dielectric ceramics for microwave/millimeter-wave communication[J]. Journal of Advanced Ceramics, 13, 602(2024).

    [42] LI J, LIU J, ZHANG Y C et al. Exploring the Ln-O bonding nature and charge characteristics in monazite in relation to microwave dielectric properties[J]. Journal of the American Ceramic Society, 107, 175(2024).

    [43] FENG Z B, WANG Y Z, KIMURA H et al. Sintering behavior, microwave dielectric properties, and chemical bond features of novel low-loss monoclinic-structure Ni3(PO4)2 ceramic based on NiO-P2O5 binary phase diagram[J]. Ceramics International, 48, 30681(2022).

    [44] BAO J, DU J L, LIU L T et al. A new type of microwave dielectric ceramic based on K2O-SrO-P2O5 composition with high quality factor and low sintering temperature[J]. Ceramics International, 48, 784(2022).

    [45] CHEN X Q, LI H, ZHANG P C et al. A low-permittivity microwave dielectric ceramic BaZnP2O7 and its performance modification[J]. Journal of the American Ceramic Society, 104, 5214(2021).

    [46] BAO J, ZHANG Y P, KIMURA H et al. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1-xTix)3(MoO4)9 ceramics[J]. Journal of Advanced Ceramics, 12, 82(2023).

    [47] ZHANG Y H, SUN J J, DAI N et al. Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics[J]. Journal of the European Ceramic Society, 39, 1127(2019).

    [48] LIU W Q, ZUO R Z. Low temperature fired Ln2Zr3(MoO4)9 (Ln=Sm, Nd) microwave dielectric ceramics[J]. Ceramics International, 43, 17229(2017).

    [49] LIU W Q, ZUO R Z. A novel low-temperature firable La2Zr3(MoO4)9 microwave dielectric ceramic[J]. Journal of the European Ceramic Society, 38, 339(2018).

    [50] XING C F, WU B, BAO J et al. Crystal structure, infrared spectra and microwave dielectric properties of a novel low-firing Gd2Zr3(MoO4)9 ceramic[J]. Ceramics International, 45, 22207(2019).

    [51] TAO B J, XING C F, WANG W F et al. A novel Ce2Zr3(MoO4)9 microwave dielectric ceramic with ultra-low firing temperature[J]. Ceramics International, 45, 24675(2019).

    [52] TIAN H R, ZHOU X, JIANG T Y et al. Bond characteristics and microwave dielectric properties of (Mn1/3Sb2/3)4+ doped molybdate based low-temperature sintering ceramics[J]. Journal of Alloys and Compounds, 906:, 164333(2022).

    [53] BAO J, WANG Y Z, KIMURA H et al. Sintering characteristics, crystal structure, and microwave dielectric properties of Ce2[Zr1-x(Al1/2Nb1/2)x]3(MoO4)9 ceramics[J]. Journal of Alloys and Compounds, 925:, 166566(2022).

    [54] IVLEVA L I, BASIEV T T, VORONINA I S et al. SrWO4: Nd3+-new material for multifunctional lasers[J]. Optical Materials, 23, 439(2003).

    [55] NAZAROV M V, TSUKERBLAT B S, POPOVICI E J et al. Optical lines in europium-terbium double activated calcium tungstate phosphor[J]. Physics Letters A, 330, 291(2004).

    [56] YOON S H, KIM D W, CHO S Y et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. Journal of the European Ceramic Society, 26, 2051(2006).

    [57] KRŽMANC M M, LOGAR M, BUDIČ B et al. Dielectric and microstructural study of the SrWO4, BaWO4, and CaWO4 scheelite ceramics[J]. Journal of the American Ceramic Society, 94, 2464(2011).

    [58] KHOBRAGADE N, SINHA E, ROUT S K et al. Structural, optical and microwave dielectric properties of Sr1-xCaxWO4 ceramics prepared by the solid state reaction route[J]. Ceramics International, 39, 9627(2013).

    [59] PÔRTO S L, LONGO E, PIZANI P S et al. Photoluminescence in the CaxSr1-xWO4 system at room temperature[J]. Journal of Solid State Chemistry, 181, 1876(2008).

    [60] LONGO V M, ORHAN E, CAVALCANTE L S et al. Understanding the origin of photoluminescence in disordered Ca0.60Sr0.40WO4: an experimental and first-principles study[J]. Chemical Physics, 334, 180(2007).

    [61] NAJAFVANDZADEH N, VALI R. The electronic and microwave dielectric properties of Sr1-xCaxWO4 alloys by first principles calculations[J]. Physica B: Condensed Matter, 572:, 266(2019).

    [62] ZHANG Q, SU H, ZHANG H W et al. Bond, vibration and microwave dielectric characteristics of Zn1-x(Li0.5Bi0.5)xWO4 ceramics with low temperature sintering[J]. Journal of Materiomics, 8, 392(2022).

    [63] ZHANG Q, XU L L, TANG X L et al. Electronic structure, Raman spectra, and microwave dielectric properties of co-substituted ZnWO4 ceramics[J]. Journal of Alloys and Compounds, 874:, 159928(2021).

    [64] YIN C Z, LI C C, YANG G J et al. NaCa4V5O17: a low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications[J]. Journal of the European Ceramic Society, 40, 386(2020).

    [65] XIANG H C, LI C C, TANG Y et al. Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M=Mo, W) and their chemical compatibility with metal electrodes[J]. Journal of the European Ceramic Society, 37, 3959(2017).

    [66] CAO H M, CHEN L, LI B. A new microwave dielectric ceramic Zn2V2O7 with low sintering temperature[J]. Materials Letters, 326:, 132924(2022).

    [67] LIN M C, LING I C, HSU T H et al. Investigation of the correlation between structure and microwave dielectric properties of ZnV2O6 ceramic using P-V-L bond theory[J]. Journal of the European Ceramic Society, 44, 5016(2024).

    [68] YANG R J, CHEN L, LI B. A new rare-earth orthovanadate microwave dielectric ceramic: ErVO4[J]. Materials Chemistry and Physics, 301:, 127630(2023).

    [69] ZHANG P, FAN X, FAN X Y. Effects of Cu2+ substitution on the sintering behavior, crystal structure and microwave dielectric properties of Li3Mg4NbO8 ceramics[J]. Materials Chemistry and Physics, 316:, 129118(2024).

    [70] XIE F, ZHOU S, GAO F et al. Raman vibration, bond chemistry and enhanced microwave dielectric properties of Li3Mg2NbO6 ceramics under an oxygen atmosphere[J]. Ceramics International, 48, 32049(2022).

    [71] PENG S, LI C, GAO X H et al. Crystal structures, chemical bonds, and microwave dielectric properties of ZnCu2Nb2O8 ceramics[J]. Ceramics International, 50, 2396(2024).

    [72] HUANG Z P, QIAO J L, LI L X. Enhanced dielectric properties and chemical bond characteristics of MgNb2O6 ceramics due to magnesium oxide doping[J]. Ceramics International, 49, 32946(2023).

    [73] WANG G, YAN H, HU Y F et al. Microstructure evolution, crystal structure, Raman analysis, bond characteristics and enhanced microwave dielectric properties of Zn1-xCuxZrNb2O8 solid solution ceramics[J]. Ceramics International, 49, 35264(2023).

    [74] YANG H Y, CHAI L, LIU Q et al. Ionic substitution effects on the structure-property relationship of Zn0.5Ti0.5NbO4 microwave dielectric ceramics[J]. Ceramics International, 48, 25292(2022).

    [75] WU F F, ZHOU D, DU C et al. Temperature stable Sm(Nb1-xVx)O4 (0.0≤x≤0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications[J]. Journal of Materials Chemistry C, 9, 9962(2021).

    [76] LIU H T, WANG G, ZHANG H W. Correlation between crystal structure, bond characteristics, Raman vibrations, and improved microwave dielectric properties of high-performance Zn0.5Zr0.5NbO4 ceramics: first principle calculation and experiment[J]. Ceramics International, 49, 30001(2023).

    [77] WANG J, ZELENYUK A, IMRE D et al. Big data management with incremental K-means trees-GPU-accelerated construction and visualization[J]. Informatics, 4, 24(2017).

    [78] ZHENG J Y, WANG S, GAO L H et al. First-principlescalculations of crystal structure, electronic structure and optical properties of Ba2RETaO6 (RE = Y, La, Pr, Sm, Gd)[J]. Journal of Materials Science, 53, 9401(2018).

    [79] HUO J M, ZHONG C W, LI E Z et al. New temperature stable YbTaO4 microwave dielectric ceramic with monoclinic structure[J]. Ceramics International, 48, 34465(2022).

    [80] KIM E S, JEON C J. Dependence of microwave dielectric properties on structural characteristics of ilmenite, tri-rutile and wolframite ceramics[J]. Journal of Advanced Dielectrics, 1, 127(2011).

    [81] YANG H Y, GUO Z X, XIONG Z et al. Bond theory, vibrational spectroscopy, and dielectric responses of trirutile ATa2O6 (A = Mg, Ni) microwave ceramics[J]. Ceramics International, 50, 19171(2024).

    [82] FANG Z X, YANG H Y, YANG H C et al. Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics[J]. Ceramics International, 47, 21388(2021).

    [83] SHI L, WANG X Y, PENG R et al. Bond characteristics and microwave dielectric ceramic of rare-earth tantalite NdTaO4 ceramic[J]. Ceramics International, 48, 30101(2022).

    [84] SHI L, WANG X Y, PENG R et al. Effect of Mn2+ doping on the lattice and the microwave dielectric properties of MgTa2O6 ceramics[J]. Ceramics International, 48, 20096(2022).

    [85] SHI L, WANG X Y, PENG R et al. Crystallographic characteristics and microwave dielectric properties of Ni-modified MgTa2O6 ceramics[J]. Ceramics International, 47, 22514(2021).

    [86] WU X H, JING Y L, LI Y X et al. Novel tri-rutile Ni0.5Ti0.5TaO4 microwave dielectric ceramics: crystal structure chemistry, Raman vibration mode, and chemical bond characteristic in-depth studies[J]. The Journal of Physical Chemistry C, 126, 14680(2022).

    [87] YANG H Y, ZHANG S R, CHEN Y W et al. Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics[J]. Inorganic Chemistry, 58, 968(2019).

    [88] LIU K, ZHANG H W, LIU C et al. Relationship between microwave dielectric properties and structure of Ca2+-substituted ZnZrTa2O8 ceramics[J]. Journal of Alloys and Compounds, 934:, 167981(2023).

    [89] LIN Y J, WANG S F, LAI B C et al. Densification, microstructure evolution, and microwave dielectric properties of Mg1-xCaxZrTa2O8 ceramics[J]. Journal of the European Ceramic Society, 37, 2825(2017).

    [90] WANG G, ZHANG D N, LI J et al. Structural dependence of microwave dielectric performance of wolframite structured Mg1-xCaxZrNb2O8 ceramics: crystal structure, microstructure evolution, Raman analysis and chemical bond theory[J]. Journal of the European Ceramic Society, 41, 3445(2021).

    [91] GUO Y P, OHSATO H, KAKIMOTO K I. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency[J]. Journal of the European Ceramic Society, 26, 1827(2006).

    [92] LEI W, LU W Z, ZHU J H et al. Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites[J]. Materials Letters, 61, 4066(2007).

    [93] KAGOMIYA I, MATSUDA Y, KAKIMOTO K et al. Microwave dielectric properties of YAG ceramics[J]. Ferroelectrics, 387, 1(2009).

    [94] FU Z F, LIU P, MA J L et al. Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr)[J]. Journal of the European Ceramic Society, 36, 625(2016).

    [95] YANG J, PANG J B, LUO X F et al. Phase structure, bond features, and microwave dielectric characteristics of Ruddlesden- Popper type Sr2TiO4 ceramics[J]. Materials, 16, 5195(2023).

    [96] LI H, XIANG R, CHEN X Q et al. Intrinsic dielectric behavior of Mg2TiO4 spinel ceramic[J]. Ceramics International, 46, 4235(2020).

    [97] KIM H T, BYUN J D, KIM Y. Microstructure and microwave dielectric properties of modified zinc titanates (II)[J]. Materials Research Bulletin, 33, 975(1998).

    [98] WANG Y J, LI J, FANG W S et al. A novel ultra-high Q microwave dielectric ceramic ZnMgTiO4 with spinel structure[J]. Ceramics International, 49, 35420(2023).

    [99] GEORGE S, SEBASTIAN M T. Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A=Mg, Zn) ceramics[J]. Journal of the American Ceramic Society, 93, 2164(2010).

    [100] GUO H H, FU M S, ZHOU D et al. Design of a high-efficiency and- gain antenna using novel low-loss, temperature-stable Li2Ti1-x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics[J]. ACS Applied Materials & Interfaces, 13, 912(2021).

    [101] LIU K, SHI L, WANG X Y et al. Li+ enrichment to improve the microwave dielectric properties of Li2ZnTi3O8 ceramics and the relationship between structure and properties[J]. Journal of the European Ceramic Society, 43, 1483(2023).

    [102] JOVIC N, ANTIC B, KREMENOVIC A et al. Cation ordering and order-disorder phase transitionin co-substituted Li4Ti5O12 spinels[J]. Physica Status Solidi (a), 198, 18(2003).

    [103] TANG Y, SHEN S Y, LI J et al. Characterization of structure and chemical bond in high-Q microwave dielectric ceramics LiM2GaTi2O8 (M = Mg, Zn)[J]. Journal of the European Ceramic Society, 42, 4573(2022).

    [104] QING Z J, LIU A, DUAN S M et al. Structure, chemical bonding characteristics and microwave dielectric properties of Li5Mg3Ti2O9F ceramic with low sintering temperature[J]. Ceramics International, 50, 15195(2024).

    [105] LOWNDES R, AZOUGH F, CERNIK R et al. Structures and microwave dielectric properties of Ca(1-x)Nd2x/3TiO3 ceramics[J]. Journal of the European Ceramic Society, 32, 3791(2012).

    [106] YOSHIDA M, HARA N, TAKADA T T T et al. Structure and dielectric properties of (Ca1-xNd2x/3)TiO3[J]. Japanese Journal of Applied Physics, 36:, 6818(1997).

    [107] XIONG Z, TANG B, LUO F C et al. Characterization of structure, chemical bond and microwave dielectric properties in Ca0.61Nd0.26TiO3 ceramic substituted by chromium for titanium[J]. Journal of Alloys and Compounds, 835:, 155249(2020).

    [108] YANG H Y, ZHANG S R, YANG H C et al. Structural evolution and microwave dielectric properties of x[J]. Inorganic Chemistry, 57, 8264(2018).

    [109] HU Z C, LI E Z, YANG H C et al. Ionic substitution effects on the crystal structure and microwave dielectric properties of rutile Zn0.15Nb0.3Ti0.55O2 ceramics[J]. Journal of Materials Science: Materials in Electronics, 35, 15(2023).

    [110] LIU Y, CHENG Z L, GAN L et al. Microwave dielectric properties and sintering behavior of a novel low-cost lightweight, middle-εr Na2Ti6O13 ceramics[J]. Ceramics International, 50, 2103(2024).

    Tools

    Get Citation

    Copy Citation Text

    Zhichao HU, Hongyu YANG, Hongcheng YANG, Chengli SUN, Jun YANG, Enzhu LI. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics[J]. Journal of Inorganic Materials, 2025, 40(6): 609

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 29, 2024

    Accepted: --

    Published Online: Sep. 2, 2025

    The Author Email: Hongyu YANG (yanghongyu@xidian.edu.cn), Enzhu LI (lienzhu@uestc.edu.cn)

    DOI:10.15541/jim20240450

    Topics